
Environment

interface of a Permissioned Decentralized

Abstracting Data Updates over a Document-oriented

Academic year 2023-2024

Master of Science in Computer Science Engineering

Master's dissertation submitted in order to obtain the academic degree of

Counsellors: Dr. ir. Ruben Taelman, Bryan-Elliott Tam
Supervisors: Dr. ir. Ruben Taelman, Prof. dr. ir. Ruben Verborgh

Student number: 01901393

Jitse De Smet

Foreword
I would like to acknowledge everyone who accompanied me during my Bachelor and
Master. My dedication and their help during my master’s and bachelor’s degrees allowed
me to expand my knowledge. Allowing me to grow both individually and academically.
Reducing the scope to this Master dissertation, I would specifically like to thank my
promotors Dr. ir. Ruben Taelman and Prof. dr. ir. Ruben Verborgh for expecting the
best in me and supporting me academically. Beyond their academic support, they have
gone beyond what was expected of them and also allowed me to talk to them about life
in general. In my personal spheres, I would like to explicitly thank my parents and my
girlfriend, as well as my friends.

The author gives permission to make this master dissertation available for consultation and
to copy parts of this master dissertation for personal use. In all cases of other use, the

copyright terms have to be respected, in particular with regard to the obligation to state
explicitly the source when quoting results from this master dissertation.

This master’s dissertation is part of an exam. Any comments formulated by the assessment
committee during the oral presentation of the master’s dissertation are not included in this

text.

iii

Abstracting Data Updates over a Document-oriented inter-
face of a Permissioned Decentralized Environment

Jitse De Smet
jitse.desmet@ugent.be

Master’s dissertation submitted in order to obtain the academic degree of
Master of Science in Computer Science Engineering

Academic Year 2023-2024
Faculty of Engineering and Architecture

Ghent University
Supervisors: Counsellors:

Dr. ir. Ruben Taelman Dr. ir. Ruben Taelman
Prof. dr. ir. Ruben Verborgh Bryan-Elliott Tam

Keywords - Semantic Web, Update Queries, Solid
Data is the new gold; you hear it constantly. Much of that gold flows through Web

technologies into the centralized data stores of massive companies such as Amazon,
Google, and TikTok. The Web, however, was envisioned as a decentralized information
space to which anyone could read and write information. Today’s centralization of data
causes numerous problems, such as privacy-related issues and the centralization of at-
tention. This centralization of attention and media control causes social turbulence. For
example, the US ban on TikTok or, more recently, the ban of TikTok by France in
response to protests. In response to these crises, various initiatives, such as Solid and
Mastodon, are working towards re-decentralizing the Web. The re-decentralization of
the Web comes with various challenges to overcome, since the world is not the same as it
used to be. These challenges range from efficient and interoperable reading and writing
to expressing potentially complex usage/ access policies. Efficient reading in the context
of a decentralized, permissioned ecosystem has received some research attention, but
writing remains rather unexplored. Therefore, we examined the current state of the
Solid specification to investigate the problems and data dependencies updates currently
face. The most challenging problem is access path dependence, where writers of data
need to explicitly specify a location to write or update data. Similar issues are present
when reading data in Solid, but they are abstracted through the use of a query engine.
We therefore investigate the possibility of a query engine that can create and update
resources without data dependencies. Our evaluations show that such a query engine
can be created by providing a structural description and has limited overhead. Having
a data dependency free approach to update decentralized data is of massive importance
in the adaptation of decentralized systems, as it allows easier management of data.
The current implementation is limited to updating data of one federation, additional
research is required to support inter-federation updates.

iv

mailto:jitse.desmet@ugent.be

Abstracting Data Updates over a Document-oriented
interface of a Permissioned Decentralized

Environment
Jitse De Smet

J. De Smet is a master student with the KNowledge On Web Scale team
within IDLab, Ghent University (UGent), Gent, Belgium. Email:
jitse.desmet@ugent.be

Supervisors: Dr. ir. Ruben Taelman, Prof. dr. ir. Ruben Verborgh

Abstract - Data is the new gold; you hear it constantly. Much of
that gold flows through Web technologies into the centralized
data stores of massive companies such as Amazon, Google, and
TikTok. The Web, however, was envisioned as a decentralized
information space to which anyone could read and write infor-
mation. Today’s centralization of data causes numerous prob-
lems, such as privacy-related issues and the centralization of
attention. This centralization of attention and media control
causes social turbulence. For example, the US ban on TikTok
or, more recently, the ban of TikTok by France in response to
protests. In response to these crises, various initiatives, such
as Solid and Mastodon, are working towards re-decentralizing
the Web. The re-decentralization of the Web comes with various
challenges to overcome, since the world is not the same as it
used to be. These challenges range from efficient and interoper-
able reading and writing to expressing potentially complex us-
age/ access policies. Efficient reading in the context of a decen-
tralized, permissioned ecosystem has received some research
attention, but writing remains rather unexplored. Therefore, we
examined the current state of the Solid specification to inves-
tigate the problems and data dependencies updates currently
face. The most challenging problem is access path dependence,
where writers of data need to explicitly specify a location to
write or update data. Similar issues are present when reading
data in Solid, but they are abstracted through the use of a query
engine. We therefore investigate the possibility of a query en-
gine that can create and update resources without data depen-
dencies. Our evaluations show that such a query engine can be
created by providing a structural description and has limited
overhead. Having a data dependency free approach to update
decentralized data is of massive importance in the adaptation of
decentralized systems, as it allows easier management of data.
The current implementation is limited to updating data of one
federation, additional research is required to support inter-fed-
eration updates.

Keywords - Semantic Web, Update Queries, Solid

I. IntroductIon
Data in today’s web is increasingly captured in huge data si-
los. The extent of these silos is enormous, reaching the limits of
what is societal and legislative permitted. From a societal per-
spective, these silos are a giant threat to the privacy of users.
This centralization of privacy causes social turbulence, since
it centralizes the attention of the masses and thus media con-
trol into a select few. Luckily, legislative measures have been
taken to protect society from this centralization [1] [2] . As a

response, centralization technologies are being developed, such
as Solid [3] , Bluesky [4] , Mastodon [5] and various blockchain-
based initiatives [6] .

The Solid initiative achieves decentralization by creating a
standard building on top of existing Web standards. This ap-
proach allows for interoperability and easier workflow adapta-
tion by leveraging existing expertise. Nevertheless, the re-de-
centralization of the Web comes with various challenges rang-
ing from efficient and effective read and write operations, to
expressing and enforcing access and usage control policies.
Reading data in this context has already gained some scientific
attention [7] [8] , but effectively writing data remains rather
unexplored.

Data decentralization initiatives such as Solid and Bluesky
decentralize data by providing each user with a self-governed
data store. Users are in control of their data store, how they in-
teract with the datastore and who they share their data with.
The effectiveness of reading data in a decentralized environ-
ment has been increased by abstracting data reads through a
query abstraction layer, the query engine, by using query lan-
guages like GraphQL [9] and SPARQL [10] . In this work, we
will similarly research how we can abstract data updates by us-
ing a query abstraction layer. The current (draft) Solid specifi-
cation [11] describes each data store, or pod, as a document
oriented interface where a user decides for each document who
can access that document. Our goal is thus to create a query en-
gine that effectively decides what document a resource should
be stored in, liminating the access-path data dependency. We
hypothesize that such a query engine has a 2x overhead in the
number of HTTP requests and a 4x overhead in the execution
time compared to a query engine that requires the user to con-
figure the document explicitly. This overhead is often accept-
able because applications are typically created in such a way
that they synchronize local changes in the background, without
disturbing the user. This acceptable delay of updates contrasts
with reads because in the case of reading data, the user flow is
often interrupted when information is transferred.

II. related Work
The Solid specification [11] builds on top of existing Semantic
Web technologies such as RDF (Resource Description Frame-
work) [12] and LDP (Linked Data Platform) [13] . LDP is a set

v

mailto:jitse.desmet@ugent.be

of rules that is used to create a document oriented interface ac-
ceptable through HTTP. Such an interface essentially exposes
a file system over HTTP, it creates directories, called Contain-
ers, that group together data documents and directories. Each
of the exposed HTTP resources has their own access control
policy declared through either WAC [14] or ACP [15] .

A. Theoretical positioning of Solid
The collection of all Solid pods can be interpreted as one big
permissioned decentralized graph database with some interest-
ing properties. A typical distributed database will both repli-
cate and shard its data [16] . Sharding data means that the col-
lection of all data is divided into smaller shards, and each ma-
chine manages one or more shards. Sharding allows us to scale
our data horizontally. Each shard is then replicated on multiple
machines, making the system partition tolerant [17] . Differ-
ent approaches exist to configure the shards and replications.
Often times, each shard will have one leader replication, and
the other replications are followers. Reads then happen to both
leader and followers, while writes only happen to the leader.
The leader is responsible for synchronizing all changes to the
followers. Such a configuration chooses reads to have eventual
consistency [16] [18] , positioning itself on the CAP scale [17]
[19] by choosing Availability and Partition Tolerance.

The Solid specification builds on top of HTTP and therefore,
links can break [20] . This essentially means that there is no par-
tition tolerance. When a pod is disconnected, the data on that
pod becomes unavailable. Solid thus only has sharding and no
replication from a theoretical perspective. This is an interesting
design choice because it means that the Solid specification is
yet to position itself on the CAP scale.

B. Concise Bounded Description
In this work, we will try to store RDF resources, defined as the
CBD (Concise Bounded Description) [21] of a Named Node.
The CBD of a resource is defined as the collection of triples that
can be accessed by recursively following objects, without fol-
lowing named nodes. As an example, Figure 1 contains some
RDF data in turtle [22] format, taking the CBD of named node
<me> results in Figure 2.

@prefix ex: <http://example.org/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
<me> a foaf:Person ;
 foaf:givenName "Alice" ;
 foaf:knows ex:Bob, ex:Carol ;
 foaf:knows [
 foaf:givenName "Dave"
] .
ex:Bob
 foaf:givenName "Bob" ;
 foaf:familyName "Builder" .

Figure 1: An example RDF file.

C. Resource Descriptions
RDF datastores, and by extension, Solid pods, are schemaless.
This means that data contained does not follow a specific, rigid
format unlike a relational database. In the context of Big Data,
this is beneficial because defining a schema that should be fol-

@prefix ex: <http://example.org/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
<me> a foaf:Person ;
 foaf:givenName "Alice" ;
 foaf:knows ex:Bob, ex:Carol ;
 foaf:knows [
 foaf:givenName "Dave"
] .

Figure 2: The CBD of named node <me> in Figure 1.

lowed by all actors that write data is impossible, since both the
actors, and their way of working constantly changes. Data con-
sumers might expect data they consume to follow a certain for-
mat. Shape descriptions describe the format of data and can be
used to validate that data indeed follows the expected format.
Two RDF shape description languages are important, ShEx [23]
and SHACL [24] . A self-descriptive declaration of ShEX can
be found in Figure 3. We do not provide a similar example for
SHACL since its syntax uses turtle. This is more verbose, but
the predicate names are self-describing.

our EmployeeShape reuses the FOAF ontology
An <EmployeeShape> has:
<EmployeeShape> {
at least one givenName.
 foaf:givenName xsd:string+,
 foaf:familyName xsd:string, # one familyName.
 foaf:phone IRI*, # any number of phone numbers.
 foaf:mbox IRI # one FOAF mbox.
}

Figure 3: Self-explanetory example ShEx shape.

D. Storage Organization Descriptions
Just like RDF does not define its data schema, so does LDP not
define its data organization. As a result, someone reading a pod
does not know where it can find the data relevant to them.
However, just like RDF data can be described using a resource
description, so can an LDP interface organization be described.
Solid proposes two ways of describing a pod: Type Indexes [25]
and Shape Trees [26] . The Type Indexes specification was a
first attempt at describing the resources of a Pod. It describes
the use of a public and private index over the rdf:type predi-
cate. The construction of a public and private index is, however,
fundamentally flawed since resources cannot be grouped into
either public or private because more complex access control is
the norm.

Shape Trees are the proposed replacement of Type Indexes.
Type Indexes were limited to creating indexes based on the type
predicate. As an improvement Shape Trees index is based on
some Resource Description. Moreover, Shape Trees are the nat-
ural extension of these resource descriptions to resource hier-
archies.

In the context of read queries, it has been proven that using
the structure of a pod by, for example, consulting the type in-
dexes can be beneficial [8] . It thus makes sense to speculate
that a similar structural description can help write queries.

vi

III. Storage guIdance Vocabulary
Unfortunately, neither Type Indexes [25] , nor Shape Trees [26]
are sufficiently descriptive to assess whether a resource should
be stored in a document. As an example, we give a small list
of questions that cannot be answered by either data store de-
scriptions:
1. What if multiple directories match? Do I duplicate the re-

source?
2. What should I do if no documents match?
3. How are resources grouped?

i. Can I infer that resources grouped by a property are al-
ways grouped by that property?

ii. Does that mean that if I get a new object for that property
that I can just create a new document?

4. What should I do when I update a resource?
i. Should I alter the data store description?

ii. Should I move the resource? (Assign a new named node?)
5. Are all clients equal? Do they all abide the structural infor-

mation description?

To answer these questions, we developped a new vocabulary,
namely, the Storage Guidance Vocabulary (SGV). The basic con-
cepts of the vocabulary are:
Resource Collection: Corresponds to a group of RDF re-
sources.
Unstructured Collection: Corresponds to a classical LDP
container or HTTP resource.
Structured Collection: A canonical or derived collection. (be-
low)
Canonical Collection: A resource collection containing re-
sources.
Derived Collection: A resource collection that stores re-
sources already stored by one or more other structured con-
tainers.
Resource Description: A way of describing resources, for ex-
ample through ShEx or SHACL.
Group Strategy: A description of how resources should be
grouped together, for example: my images are grouped per cre-
ation date.
Store Condition: When multiple collections are eligible to
store a resource, the store condition decides what collection(s)
actually store the resource. Allowing the creation of a store pri-
ority system.
Update Condition: Describes what to do when a containing
resource is changed.
Client Control: Describes the amount of freedom a client has
when trying to store a resource.

A. Flow: Create Resource
To clarify the different concepts, we will walk through an ex-
ample flow to create a resource. Figure 4 shows a query that
would trigger this flow. The query engine will essentially dis-
cover what URI should be used as a base. To do so, it goes
through the followings steps:
1. The client gets the SGV description of the storage space (can

be cached).

2. The client checks all canonical collections and checks if the
resource to be inserted matches a resource description of the
collection.

3. If the resource matches a description, the client checks the
store condition of the description given the eligible collec-
tions.

4. For each collection that stores the resource:
i. The client checks the group strategy of the collection and

groups the resource accordingly, deciding on the name of
the new resource.

ii. The client checks the collections that are derived from
this collection. Step 4 is executed for all collections that
are derived from this collection, and the resource matches
the description.

5. The client performs the store operation.

INSERT DATA {
 <> a ns1:Post ;
 ns1:content
 "I want to eat an apple." ;
 ns1:creationDate
"2024-05-08T23:23:56Z"^^xsd:dateTime ;
 ns1:id "416608218494388"^^xsd:long ;
 ns1:hasCreator card:me ;
 ns1:hasTag tag:Austria ;
 ns1:isLocatedIn resource:China .
}

Figure 4: Example resource insertion query

B. Flow: Update Resource
Creating a resource is, of course, only one facet. Now we will
look at the flow of updating, or similarly, deleting data. Figure 5
shows an example update query that would trigger an update
flow:
1. The client gets the SGV description of the storage space and

the HTTP resource containing the updated RDF resource.
2. The client virtually constructs the resource that would result

from the requested operation.
3. The client checks the update condition of the original match-

ing resource description. The following action depends on
the update condition. Typically, the update-condition will
say whether an RDF resource is moved or not.
i. Move required: remove the existing resource and follow

the steps described in the create resource flow.
ii. No move required: just update the resource as requested

by the user.

DELETE {
 ?id ns1:id "416608218494388"^^xsd:long .
} INSERT {
 ?id ns1:id "416608218494389"^^xsd:long .
} where {
 BIND(:416608218494388 as ?id)
}

Figure 5: Example resource update query

vii

IV. eValuatIon
To verify our hypothesis, we implemented an SGV aware query
engine and benchmarked it1. The provided implementation

1Both the implementation, and the benchmark are available at:
https://github.com/jitsedesmet/sgv-update-engine/releases/tag/v0.0.2

does not implement all features of SGV, but provides a suffi-
cient implementation to verify the hypothesis. Our hypothesis
is two-fold. We want to verify both the HTTP-request overhead
and the execution time overhead. The former will be evaluated
theoretically as it provides more insights into the system. The
latter, on the other hand, will require an empirical evaluation.

A. Theoretical Evaluation
Depending on the operation, a different number of HTTP re-
quests is required. We will analyse three different cases: 1. cre-
ating a resource, 2. updating a resource, but not moving it, and
3. updating a resource and moving it.

1. Creating a Resource
The creation of a resource requires the client to fetch the SGV
description. Assuming the description is located in a single file,
this amounts to one HTTP request.

After getting the description, the client computes the loca-
tion the resource should be stored. When done, the client per-
forms another HTTP request to store the resource there.

Our hypothesis holds for this operation, since a client not us-
ing SGV would require but one HTTP request, namely to create
the resource.

2. Updating a resource, not moving it
In the case of updating a resource, we need to both get the SGV
description and the original resource. Getting both resources
can, however, be done in parallel.

A client will now compute whether the resource should be
moved, and conclude it need not be moved. The client will thus
perform another request to update the HTTP resource it just
received.

In total, this amounts to tree HTTP requests. A non-SGV
aware client would require two HTTP requests, one to get the
original resource in order to create its binding, and one to per-
form the update. The hypothesis thus holds true.

3. Updating a resource, moving it
In case a move is required, an SGV engine would do the same
steps as before, but when updating the resource, it would need
two (parallel) HTTP requests. One to delete the original and one
to create the new one. Resulting in four HTTP requests. A non-
SGV query engine would require at least three HTTP requests
to achieve the same result, two of which can also be parallelized.
This thus verifies our HTTP requests count hypothesis.

B. Empirical evaluation
For our empirical evaluation, we benchmark our SGV-aware
engine using SolidBench2. This exposes pods containing LDBC

2https://github.com/SolidBench/SolidBench.js

Social Network Benchmark (SNB) [27] data. We created four
pods with their own way of organizing social media posts: 1.
organizing all posts in a directory with a file for each creation

date, 2. organizing all posts in a directory with a file for each
creation location, 3. organizing all posts in a directory with a
file post, and 4. organizing all posts in one file.

These organization structures are then evaluated using
queries that test five different choke points: 1. creating a re-
source, 2. updating a resource, not modifying it, 3. updating
a resource, moving it, 4. performing an illegal update, and 5.
deleting a resource.

Choke points 1 and 3 are most essential for SGV, we therefore
provide the measure execution time for these in respectively
Table 1 and Table 2. The interested reader can find the other
evaluations in the accompanying document.

From evaluations, we concluded that our hypothesis holds
when we compare the execution time of an SGV query engine
to a non-SGV engine that executes the same operations. Note
that using a non-SGV engine, one cannot express the resource
move using a single SPARQL query because SPARQL cannot
express the CBD.

Table 1: Average execution time of inserting data (avg. of 100
runs)

frag. Strat. ops/sec Average Time
(ms)

Margin

by date: SGV 22 44582.068 ±1.73%
by date: RAW 35 27899.513 ±2.07%
one file: SGV 6 149415.739 ±2.98%
one file: RAW 7 134361.192 ±8.66%
own file: SGV 10 91851.395 ±2.56%
own file: RAW 13 76672.217 ±3.07%

by location: SGV 23 43005.366 ±2.20%
by location: RAW 35 28003.949 ±2.53%

Table 2: Average execution time of moving a resource (avg. of
100 runs)

Task ops/sec Average Time
(ms)

Margin

by date: SGV 7 141940.530 ±1.28%
by date: RAW 11 87113.119 ±0.75%
one file: SGV 2 343690.220 ±1.70%
one file: RAW 4 208930.211 ±2.04%
own file: SGV 5 177991.908 ±0.58%
own file: RAW 12 80729.940 ±1.06%

by location: SGV 7 133052.120 ±0.60%
by location: RAW 12 81066.196 ±1.15%

V. Future Work
To our knowledge, this is the first effort of abstracting data
updates over a document-oriented interface of a decentralized
permissioned environment. As such, there is a plenty of future
work.

viii

https://github.com/jitsedesmet/sgv-update-engine/releases/tag/v0.0.2
https://github.com/SolidBench/SolidBench.js

A. Inter-Pod updates
In this work we reduced the complexity by assuming that we
want to update a single pod. Of course, updating multiple pods
with a single query is a logical next step where different con-
siderations need to be taken into account.
1. As a pod owner, I want to transfer the pictures I have to

someone else, so they now own that picture. Note that I am
not guaranteed to have write permissions to the other Solid
pod.

2. As a pod owner, I want to transfer a token to a pod I do, or
do not, have write access to. The token should always exist
exactly once, meaning there is always one person holding the
token, and everyone can see who has it.

3. As a pod owner, I want to insert an additional property to
an existing resource in someone else’s pod. For example, I
transferred a picture and forgot to add a description.

4. As a pod owner, I want to delete a property of an existing
resource in someone else’s pod.

5. As a pod owner, I want to remove a resource in someone
else’s pod, so I don’t see it any more. Essentially, I want to
change my view over the resource. This could be achieved
by using the Subweb Specification [28] and adding a rule
that makes me ignore the “virtually” deleted triple.

6. As a pod owner, I want to remove a resource in someone
else’s pod, so no one can see it. I might want to send a sug-
gestion in a notification collection of the targetted pod.

B. Other Interfaces
In this work, we investigate document-oriented interfaces, fo-
cussing on LDP. With document-oriented interface, the ques-
tion when inserting a resource is mostly: “Where do I store
this resource?” When using a different interface, that question
might shift to “What other resources are linked to this new one,
and though what links?” There is merit in investigating differ-
ent interfaces for the use of decentralized data storages, as doc-
ument oriented interfaces come with drawbacks [29] . Beyond
the drawbacks listed there, much of the complexities of SGV
are a result of the unordered, document oriented nature of SGV.
This non-descriptiveness, however, is at the benefit of the data
provider, and thus it’s unlikely that LDP will disappear.

Another interesting approach would be to create multiple in-
terfaces on the same data, as an example one interface would
serve as a SPARQL endpoint. Another endpoint could be an
LDP interface that derives collections based on the canonical
collection that is the SPARQL endpoint.

C. View Creation And Discovery
Derived resources have already proved to be beneficial to solve
issues of LDP [30] . In our benchmarks, we see that the pod data
organization heavily influences the execution time of queries.
The application exposing the data could infer what kind of re-
source organization would benefit clients through usage statis-
tics. The server could then decide to create a derived collection
to enable faster query execution.

D. Smart Access Control
Access control policies are currently created per document.
This makes access control difficult to understand, since it is

not clear why a single document has a certain access policy.
SGV describes why and what data is stored in a certain docu-
ment. Configuring an access policy in a certain document can
thus be translated to what kind of resources follow what pol-
icy. Extracting policies based on the data can be useful when
derived resources come into play. For example, it could be in-
ferred when you have access to some resource in a canonical
collection, that you should also have access to that resource in
a derived collection given no data enrichment happened when
the derived resource was created.

VI. concluSIon
In this work, we presented a vocabulary that allows smart
clients to autonomously discover the location a created or up-
dated resource should be stored within a document oriented de-
centralized interface of a permissioned decentralized environ-
ment. The vocabulary also introduces checks on whether a re-
source can be created or removed. Additionally, we proved that
our vocabulary is indeed expressive by implementing a smart
client that consumes it.

We hypothesized that such a smart client would be a max-
imum of four times slower and would require a maximum of
double the amount of HTTP requests. Through theoretical eval-
uation, we discovered that the amount of HTTP requests is
within those bounds. Using empirical evaluation, we also vali-
dated that the execution time overhead is within the accepted
range. Moreover, we saw that some of SGVs behaviour cannot
be modelled using a SPARQL query.

In essence, SGV tries to provide structure to a widely un-
structured document store, namely LDP. It does this by defin-
ing a server-side description of the structure that should be en-
forced by clients. In reality, clients can still interact with the
data store however they want, since the server is not aware that
a structure should be followed. This lack of server-side verifica-
tion is perhaps the biggest shortcoming of this work. That being
said, it is entirely possible to extend an existing data store server
with an SGV verification system. The downside at that being
that both the client and server need to calculate the proposed
location of a resource. Unfortunately, this is a shortcoming of
choosing for a low-complexity server, only to later conclude
you want to assert complex guarantees. Additionally, since one
server interface is used by many decentralized clients, it be-
comes almost impossible to guarantee a system that respects
the structure of a permissive interface without creating server-
side validation.

acknoWledgementS
I would like to acknowledge everyone who accompanied me
during my Bachelor and Master. My dedication and their help
during my master’s and bachelor’s degrees allowed me to ex-
pand my knowledge. Allowing me to grow both individually
and academically. Reducing the scope to this Master disserta-
tion, I would specifically like to thank my promotors Dr. ir.
Ruben Taelman and Prof. dr. ir. Ruben Verborgh for expecting
the best in me and supporting me academically. Beyond their
academic support, they have gone beyond what was expected
of them and also allowed me to talk to them about life in gen-

ix

eral. In my personal spheres, I would like to explicitly thank my
parents and my girlfriend, as well as my friends.

reFerenceS

[1] European Parliament and Council of the European
Union, “Regulation (EU) 2016/679 of the European Par-
liament and of the Council.” [Online]. Available: https://
data.europa.eu/eli/reg/2016/679/oj

[2] California State Legislature, “The California Con-
sumer Privacy Act of 2018.” [Online]. Available:
https://leginfo.legislature.ca.gov/faces/billTextClient.
xhtml?bill_id=201720180AB375

[3] E. Mansour et al., “A Demonstration of the Solid plat-
form for Social Web Applications,” in Proceedings of
the 25thInternational Conference Companion on World
Wide Web,2016, pp. 223–226.

[4] M. Kleppmann et al., “Bluesky and the AT Protocol: Us-
able Decentralized Social Media.” 2024.

[5] M. Zignani, S. Gaito, and G. P. Rossi, “Follow the
“Mastodon”: Structure and Evolution of a Decentralized
Online Social Network,” in Twelfth International AAAI
Conference on Web and Social Media, 2018.

[6] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash
system,” Decentralized business review, 2008.

[7] O. Hartig and M. T. Özsu, “Walking without a map:
Ranking-based traversal for querying linked data,” in The
Semantic Web–ISWC 2016: 15th International Semantic
Web Conference, Kobe, Japan, October 17–21, 2016, Pro-
ceedings, Part I 15, 2016, pp. 305–324.

[8] R. Taelman and R. Verborgh, “Link traversal query pro-
cessing over decentralized environments with structural
assumptions,” in International Semantic Web Confer-
ence, 2023, pp. 3–22.

[9] Facebook and GraphQL contributors, “GraphQL spec Oc-
tober 2021 Edition,” Oct. 2021.

[10] A. Seaborne and S. Harris, “SPARQL 1.1 Query Lan-
guage,” Mar. 2013.

[11] S. Capadisli, T. Berners-Lee, R. Verborgh, and K.
Kjernsmo, “Solid Protocol,” Dec. 2022.

[12] D. Wood, M. Lanthaler, and R. Cyganiak, “RDF 1.1 Con-
cepts and Abstract Syntax,” Feb. 2014.

[13] S. Speicher, J. Arwe, and A. Malhotra, “Linked Data Plat-
form 1.0,” Feb. 2015.

[14] T. Berners-Lee, H. Story, and S. Capadisli, “Web Access
Control,” May 2024.

[15] M. Bosquet, “Access Control Policy (ACP),” May 2022.

[16] R. Elmasri, “Fundamentals of database systems seventh
edition,” 2021.

[17] A. Fox and E. A. Brewer, “Harvest, yield, and scalable tol-
erant systems,” in Proceedings of the Seventh Workshop
on Hot Topics in Operating Systems, 1999, pp. 174–178.

[18] D. Pritchett, “BASE: An ACID Alternative: In partitioned
databases, trading some consistency for availability can
lead to dramatic improvements in scalability.,” Queue,
vol. 6, no. 3, pp. 48–55, 2008.

[19] E. Brewer, “CAP twelve years later: How the “rules” have
changed,” Computer, vol. 45, no. 2, pp. 23–29, Feb. 2012,
doi: 10.1109/MC.2012.37.

[20] T. Berners-Lee, R. Cailliau, J.-F. Groff, and B. Pollermann,
“World-Wide Web: the information universe,” Internet
Research, vol. 2, no. 1, pp. 52–58, 1992.

[21] P. Stickler, “CBD - Concise Bounded Description,” Jun.
2005.

[22] G. Carothers and E. Prud’hommeaux, “RDF 1.1 Turtle,”
Feb. 2014.

[23] T. Baker and E. Prud’hommeaux, “Shape Expressions
(ShEx) 2.1 Primer,” Oct. 2019.

[24] H. Knublauch and D. Kontokostas, “Shapes Constraint
Language (SHACL),” Jul. 201

[25] T. Turdean, J. Zucker, V. Balseiro, S. Capadisli, and T.
Berners-Lee, “Type Indexes,” Jun. 2022.

[26] E. Prud’hommeaux and J. Bingham, “Shape Trees Specifi-
cation,” Dec. 2021

[27] O. Erling et al., “The LDBC social network benchmark:
Interactive workload,” in Proceedings of the 2015 ACM
SIGMOD International Conference on Management of
Data, 2015, pp. 619–630.

[28] B. Bogaerts, B. Ketsman, Y. Zeboudj, H. Aamer, R. Tael-
man, and R. Verborgh, “Link Traversal with Distributed
Subweb Specifications,” in Proceedings of the 5th Inter-
national Joint Conference on Rules and Reasoning, S.
Moschoyiannis, R. Peñaloza, J. Vanthienen, A. Soylu,
and D. Roman, Eds., in Lecture Notes in Computer Sci-
ence, vol. 12851. Springer, Sep. 2021, pp. 62–79. doi:
10.1007/978-3-030-91167-6_5.

[29] R. Dedecker, W. Slabbinck, J. Wright, P. Hochstenbach, P.
Colpaert, and R. Verborgh, “What’s in a Pod? A knowl-
edge graph interpretation for the Solid ecosystem,” in
6th Workshop on Storing, Querying and Benchmarking
Knowledge Graphs (QuWeDa) at ISWC 2022, 2022, pp.
81–96.

[30] J. Van Herwegen and R. Verborgh, “Granular Access
to Policy-Governed Linked Data via Partial Server-Side
Query.”

x

https://data.europa.eu/eli/reg/2016/679/oj
https://data.europa.eu/eli/reg/2016/679/oj
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375

Contents

Foreword ... 2
Abstracting Data Updates over a Document-oriented interface of a

Permissioned Decentralized Environment .. iv
I. Introduction .. v
II. Related Work ... v

A. Theoretical positioning of Solid ... vi
B. Concise Bounded Description .. vi
C. Resource Descriptions .. vi
D. Storage Organization Descriptions .. vi

III. Storage Guidance Vocabulary .. vii

A. Flow: Create Resource .. vii
B. Flow: Update Resource ... vii

IV. Evaluation .. viii

A. Theoretical Evaluation .. viii
1. Creating a Resource .. viii
2. Updating a resource, not moving it .. viii
3. Updating a resource, moving it ... viii

B. Empirical evaluation .. viii
V. Future Work ... viii

A. Inter-Pod updates .. ix
B. Other Interfaces ... ix
C. View Creation And Discovery ... ix
D. Smart Access Control .. ix

VI. Conclusion ... ix
VII. Acknowledgements ... ix
Acknowledgements ... ix
VIII. References .. x
References ... x
List of Acronyms .. xix

xi

1 Preface .. i

1.1 Introduction ... i
1.2 Problem Statement .. ii
1.3 Research Question .. iii
1.4 Hypotheses ... iv
1.5 Outline ... iv

2 Semantic Web .. 6.

2.1 RDF .. 6.
2.1.1 Serializations ... 6.
2.1.2 Concise Bounded Description .. 7.

2.2 SPARQL .. 8.
2.2.1 Variable ... 9.
2.2.2 Functions ... 9.
2.2.3 Property Paths .. 9.
2.2.4 Different kind of queries .. 10.

2.3 Shape Descriptions .. 10.
2.3.1 ShEx .. 11.
2.3.2 SHACL .. 11.

2.4 Interfaces ... 11.
2.4.1 SPARQL endpoint ... 12.
2.4.2 LDP ... 12.

2.5 Query Engines ... 12.
3 Solid ... 14.

3.1 Positioning ... 14.
3.2 Access Control ... 15.

3.2.1 WAC .. 15.
3.2.2 ACP ... 16.

3.3 Usage Control .. 17.
3.4 Pod Descriptions ... 17.

xii

3.4.1 Type Index .. 17.
3.4.2 Shape Tree ... 18.

3.5 Solid Interoperability ... 19.
4 Use Case .. 20.
5 Storage Guidance Vocabulary .. 22.

5.1 Flow: A client wants to create an RDF-resource ... 23.
5.2 Flow: A client wants to update an RDF-resource 24.
5.3 Details ... 25.

5.3.1 Resource Collection ... 27.
5.3.2 Unstructured Collection .. 27.
5.3.3 Structured Collection .. 27.
5.3.4 Canonical Collection .. 29.
5.3.5 Derived Collection ... 30.
5.3.6 Grouped Collection .. 30.
5.3.7 Resource Description ... 30.
5.3.8 Group Strategy .. 31.
5.3.9 Store Condition ... 33.
5.3.10 Update condition ... 36.
5.3.11 Client Control .. 37.
5.3.12 One File One Resource .. 38.
5.3.13 Retention Policy .. 39.

5.4 Use Case: No Collection Claims Resource ... 39.
5.4.1 Notification .. 39.
5.4.2 Assume .. 39.
5.4.3 Deny .. 39.

6 Evaluation .. 40.

6.1 Implementation ... 40.
6.2 Theoretical Evaluation .. 40.

6.2.1 Insert Operation .. 41.
6.2.2 Update Resource, No Move Required .. 43.

xiii

6.2.3 Update Resource, Move Required ... 44.
6.2.4 Conclusion theoretical evaluation .. 44.

6.3 Empirical Evaluation ... 44.
6.3.1 Test Hardware Specification .. 46.
6.3.2 Choke Point Queries .. 46.
6.3.3 Choke Point: Create New Resource ... 48.
6.3.4 Choke Point: Update Resource, No Move .. 49.
6.3.5 Choke Point: Update resource: Move .. 50.
6.3.6 Choke Point: Illegal Update Resource ... 52.
6.3.7 Choke Point: Delete Resource ... 53.
6.3.8 Conclusion ... 53.

7 Future Work .. 55.

7.1 Source Discovery .. 55.
7.2 Inter pod updates .. 55.
7.3 Other Interfaces ... 56.
7.4 Guided queries ... 57.
7.5 View Creation and Discovery .. 57.
7.6 Smart Access Control .. 58.
7.7 SGV Integration with Existing Structure Ontologies 58.
7.8 General Update Behaviour .. 59.

7.8.1 CRDTs: The Eventual Consistency Approach 59.
7.8.2 ACID Transactions .. 59.

8 Conclusion .. 61.
Bibliography .. 63.

xiv

List of Figures
Figure 1: An example RDF file. .. vi
Figure 2: The CBD of named node <me> in Figure 1. vi
Figure 3: Self-explanetory example ShEx shape. vi
Figure 4: Example resource insertion query ... vii
Figure 5: Example resource update query .. vii
Figure 6: Social Network Benchmark data schema 20.
Figure 7: Flow: create RDF resource .. 24.
Figure 8: Flow: update RDF resource .. 25.
Figure 9: A legend explaining the links used in Figure 10 26.
Figure 10: Visualisation of the Storage Guidance Vocabulary 27.
Figure 11: Two Example Group Strategies ... 30.

xv

List of Tables
Table 1: Average execution time of inserting data (avg. of 100 runs) viii
Table 2: Average execution time of moving a resource (avg. of 100 runs) ...

viii
Table 3: Average execution time of insert data complete query (Listing 28)

over 100 runs .. 48.
Table 4: Average execution time of insert where tag query (Listing 30)

over 100 runs .. 50.
Table 5: Average execution time of insert data tag query (Listing 32) over

100 runs .. 50.
Table 6: Average execution time of delete where tags query (Listing 35)

over 100 runs .. 50.
Table 7: Average execution time of delete data tag query (Listing 37) over

100 runs .. 50.
Table 8: Average execution time of delete insert ID query (Listing 33)

over 100 runs .. 51.
Table 9: Average execution time of insert data ID query (Listing 31) over

100 runs .. 52.
Table 10: Average execution time of delete data ID query (Listing 36) over

100 runs .. 52.
Table 11: Average execution time of delete data complete query

(Listing 29) over 100 runs ... 53.
Table 12: Average execution time of delete where complete query

(Listing 34) over 100 runs ... 53.

xvi

List of listings
Listing 1: An example N-Triples document .. 7.
Listing 2: An example Turtle document ... 7.
Listing 3: The Concise Bounded Description of <me> from Listing 2 8.
Listing 4: An example SPARQL select query ... 9.
Listing 5: Example ShEx shape taken from their website 11.
Listing 6: SPARQL query to select all triples ... 12.
Listing 7: LDP container example .. 12.
Listing 8: Example WAC description .. 16.
Listing 9: Example ACP description ... 17.
Listing 10: An example type index ... 18.
Listing 11: Shape tree example: resource (left) can be described by a

shape tree (right) .. 18.
Listing 12: Example LDBC SNB read query .. 20.
Listing 13: Example LDBC SNB write query ... 20.
Listing 14: Example resource insertion query ... 24.
Listing 15: Example pod description using Storage Guidance Vocabulary . .

27.
Listing 16: Shape description of Storage Guidance Vocabulary. Starts left,

continues on the right. .. 27.
Listing 17: Simple resource with blank nodes ... 32.
Listing 18: Example group strategy SPARQL query 33.
Listing 19: Example prefer other SGV description 34.
Listing 20: RDF description of a person ... 35.
Listing 21: Two open shape descriptions of the person in Listing 20 35.
Listing 22: SHACL description using logical constrained components . . . 42.
Listing 23: ShEx description of a post .. 45.
Listing 24: Group strategy - by creation date ... 46.
Listing 25: Group strategy - by locations ... 46.
Listing 26: Group strategy - one file ... 46.
Listing 27: Group strategy - own file .. 46.
Listing 28: insert data - complete post ... 47.
Listing 29: delete data - complete post ... 47.
Listing 30: insert where - insert tag where tag 47.

xvii

Listing 31: insert data - an id (illegal) .. 47.
Listing 32: insert data - additional tag ... 47.
Listing 33: delete insert - replace id ... 47.
Listing 34: delete where - complete post .. 48.
Listing 35: delete - tags ... 48.
Listing 36: delete data - id (illegal) ... 48.
Listing 37: delete data - a tag ... 48.
Listing 38: A resource consisting of two named nodes as subjects. 62.

xviii

List of Acronyms
ACID – atomicity, consistency, isolation, durability: [1] 59.
ACL – Access Control List. 15.
ACP – Access Control Policy: [2] 16., 58.
API – Application Programming Interface. 41.
CAP – Consistency, Availability, Partition tolerance: [3] 14., 15., 59., 60.
CBD – Concise Bounded Description: [4] 7., 8., 32., 51., 53., 54., 61.
CCPA – California Consumer Privacy Act. i
CRDT – Conflict-free Replicated Data Type: [5] 59., 60.
GDPR – General Data Protection Regulation. i
HTTP – Hypertext Transfer Protocol. ii, iii, iv, 6., 12., 17., 18., 22., 24., 27., 30., 39., 40.,

41., 42., 43., 44., 46., 51., 53., 55., 60., 61.
LDES – Linked Data Event Streams: [6] ii, 39.
LDP – Linked Data Platform: [7] ii, iii, 12., 14., 17., 18., 22., 27., 30., 41., 56., 57., 58., 61.
RDF – Resource Description Framework: [8] 6., 7., 8., 10., 11., 12., 14., 17., 18., 22., 24.,

27., 29., 30., 31., 32., 33., 34., 36., 43., 44., 45., 58., 61.
SGV – Storage Guidance Vocabulary: The vocabulary introduced in this document in

order to explicetly dezscribe the structure of a Solid pod. 22., 23., 24., 30., 32., 37., 38., 39.,
40., 41., 43., 44., 45., 48., 49., 51., 52., 53., 55., 56., 57., 58., 61.

SHACL: SHACL [9] is a W3C Recomendation shape description language. 11., 18., 23., 31.,
35., 36., 40.

ShEx: ShEx [10] is a communty created shape description language. 11., 18., 23., 26., 31., 40.,
45.

SNB – Social Network Benchmark: [11] 20.
SPARQL. iii, 8., 9., 10., 11., 12., 32., 33., 34., 37., 42., 47., 51., 53., 54., 57., 61.
TPF – Triple Patter Fragments: [12] 11.
TREE: [13] ii, 58.
URI. 6., 7., 31., 32., 40., 42., 48.
VoID – Vocabulary of Interlinked Datasets: [14] ii
W3C – World Wide Web Consortium. 6., 11.
WAC – Web Access Control: [15] 15., 16., 58.

xix

1 Preface

1.1 Introduction
The Web has become a primary driver for economic, scientific, and societal progress.
This Web was envisioned as a globally interconnected decentralized information space
against which anyone can read and write information. However, today’s Web has be-
come increasingly centralized, as most of the data is centralized in a few large data
stores which are in full control of massive companies such as Amazon and Google. This
centralization of data on the Web leads to numerous problems, such as privacy-related
issues as people are not in control of their own personal data [16].

To solve these problems caused by data centralization, various initiatives are
working towards re-decentralizing data on the Web, such as Solid [17], Bluesky [18],
Mastodon [19], and various blockchain-based initiatives [20]. These initiatives allow
people to choose where their data is stored, either in personal data vaults [17], shared
federation instances [19], or publicly [20]. Blockchains, despite their popularity, are less
suitable as a data management system because all records are public and shared among
nodes. Furthermore, the computational cost is substantial. Recent privacy scandals and
emerging legislation such as GDPR (General Data Protection Regulation) and CCPA
(California Consumer Privacy Act) are leading to increasing adoption of these decen-
tralization initiatives. Various companies and organizations world-wide are starting to
build products and services on top of decentralization techniques, specifically Solid,
such as BBC (UK), Digita (Flanders) and Inrupt (USA). The fundamental shift from
centralized data management comes with various challenges. The Solid community tries
to tackle these challenges through a specification. Interestingly, a rather unexplored
domain is that of effectively writing data even though effective reads have achieved
some attention. In this thesis, I will explore how we can abstract data updates, with
a focus on Solid.

i

1.2 Problem Statement
Solid can theoretically be described as a permissioned decentralized data store. This
large data store is split into many different pods that are individually governed. Con-
trary to widely used NoSQL databases, Solid does not create shards over these pods.
Instead, when a pod experiences network partitioning, Solid accepts that the data on
that pod is not reachable. This works because the underlying Linked Data principles
always assume an open world principle, meaning that when data is not found, it doesn’t
conclude that it does not exist. Solid also deviates from blockchain because of this,
nodes do not contain all data of the system, but only a fraction. Additionally, access
control, and even usage control are of great importance to Solid.

Much research has been done as to how we can efficiently read from these pods.
This research asks both how to answer a query as completely as possible over different
pods, and also how to query a single pod efficiently. Solid currently describes only a
single interface type, LDP (Linked Data Platform).

The idea of LDP is to map a simple, document oriented file structure to a Linked
Data interface over HTTP (Hypertext Transfer Protocol). The interface allows for a sim-
ple server implementation and limited computational overload for servers. This means
that much client-side logic is required to take up part of the search effort. To make
matters worse for client-side searching, the interface structure depends on data provider
preferences and does not need to be described by LDP. We require an abstraction layer
to shield developers from these complexities. These abstractions can happen through
query engines that fetch data requested through a declarative query.

These query engines already allow developers to query pods effectively through a
technique called link traversal querying. A developer gives the root path of a Solid pod
and the engine queries the whole pod. Even though it’s effective, it could still benefit
from efficiency improvements. Speed-ups can be gained by incorporation the structure/
organization of the pod in the query evaluation [21]. This organization can be described
through different vocabularies, examples include, Type Index [22], Shape Trees [23],
VoID (Vocabulary of Interlinked Datasets) [14], TREE [13], and LDES (Linked Data
Event Streams) [6].

ii

A pod can thus be organized, and since LDP maps to a file system, everyone, from
data consumer, data producer and data owner, benefit from a good organization. Un-
fortunately, as of currently, there are no automated clients that infer where to store a
resource in a way that does not break the organization. Developers that want to write
data to a pod thus need to have numerous checks in place. Often times, they either
break the organization or store their data in a hard-coded location and then alter the
organization description to be compliant with the new organization. This way of work-
ing with data is unmaintainable, and it’s precisely these data dependencies that caused
Knuth to create the relational database [24].

In this thesis, we look at how we can create a query engine that can, in an appli-
cation agnostic way, infer where a resource should be stored in a Solid pod. The scope
of this thesis is limited to Solid and the LDP interface.

1.3 Research Question
The research question for this thesis is: How can we abstract data updates over

a document oriented interface of a permissioned decentralized environment

behind a query abstraction layer? We quickly go over the different terms in that
question.
• Abstract data updates: We aim to abstract the query process, so a developer does

not need to interact with the pod interfaces directly.
• Document oriented interface: the interface we interact with exposes data through

HTTP documents.
• Permissioned: each HTTP resource has access rights configured, these rights can

either grant or deny access to resources for specific users.
• Decentralized: each pod is self governed and limited rules apply to the system. A

loosely defined system allows data publisher to be opinionated.
• Query abstraction layer: we want the abstraction to happen through a declarative

query. In this work we use the SPARQL query language.

iii

1.4 Hypotheses
Our hypothesis is that we can create an automated client capable of deciding where
to store a resource given a pod. We hypothesize that the overhead such an intelligent
client has, in comparison to a client that is not smart, is limited. Concretely, we expect
a maximum execution time overhead of four times, and maximum double the HTTP
requests. For applications that do not write too often, this is an acceptable overhead
for the amount of complexity it takes away from developers. Even more so, write speeds
are, in contrast to read speeds, typically not critical, since users often don’t need them
for interactivity. The reason being that applications are typically created in such a way
that they synchronize local changes in the background, without disturbing the user.

1.5 Outline
In the next chapter, we describe the Semantic Web, an idea launched by the inventor of
the Web almost two decades ago. The semantic web is an enormous research domain,
so we limit the discussion to what is required to understand this work. We therefore
focus on data representation, data query language, data validation and data retrieval.

We continue by discussing parts of the Solid specification and positioning it in the
broader data storage field.

In our fourth chapter, we shortly discuss the use case used throughout the examples
of this work.

After discussing the use case, we discuss our contributions in detail. To clearly
explain the introduced vocabulary, we start by providing a high-level overview, after
which we walk through some user flows. Only once those high-level views are explained
will we delve into the details of the vocabulary. We conclude the chapter on our contri-
butions by sketching three short configurations that handle a single use case.

After explaining vocabulary, we continue to evaluate it. This evaluation knows both
a theoretical and empirical faced. In the end, we will conclude that our hypothesis does
indeed hold.

iv

Now that we proved our work heads in the right direction, we look onto to the
future, discussing various research opportunities. Since this work is, to our knowledge,
the first of its kind in this ecosystem, we see a lot of research avenues.

We end in a conclusion where we look back at the presented work.

v

2 Semantic Web
The Semantic Web is a W3C (World Wide Web Consortium) initiative that aims to
extend the human-readable web to a machine-readable web. The initiative started in
2001 by the inventor of the web, Sir Tim Berners-Lee [25], and has grown to be a mature
technology. Even though the technology is mature, it is not outdated, with new speci-
fications still being created to keep the system up to date with today’s requirements.
This chapter aims to give a high-level overview that is limited to the technologies used
in this work.

2.1 RDF
RDF (Resource Description Framework) [8] is a W3C specification that models graph
data using triples. A triple <s, p, o> contains a subject, predicate, and object. Each ele-
ment of the triple can be a URI and can thus be dereferenced using an HTTP GET
request. A dereferenced URI should contain additional info about that subject. A triple
can thus be modelled as an arrow labelled with a predicate from subject to object,
and each of these is a node that describes itself. Objects can also be literal values like
strings, integers, etc.

Subjects and objects can be blank nodes, these nodes are only addressable in the
context of the same file. This means that a triple can contain a blank node, which
cannot be dereferenced using HTTP. The info related to that blank node is contained
within the same document the triple resides in.

A triple exists in the context of a named graph, and when no graph is provided, the
triple exists in the defaultgraph. When adding a graph to each triple, we define an RDF
entry as a quad: <s, p, o, g>. In this work, we will always work in the default graph as a
simplification. We can make this simplification because Solid does not rely on graphs,
and adding them would be a nuance.

2.1.1 Serializations
RDF can be serialized using different formats. The formats used in this work are the
machine format n-triples and the human format turtle, but many more exist.
N-Triples
The N-Triples [26] format is an unordered serialization, serializing each triple separated
by a dot. The symbols <> are used to denote a URI. Values not contained within <>

6.

2 Semantic Web

are considered either blank nodes or literal values. Blank nodes are represented by a
“_:” prefix followed by an identifier. The format of a literal is first the value of the
literal between double quotation marks (""), followed by “^^” and then the data type.
When no data type is given, the string data type (<http://www.w3.org/2001/XMLSchema#string>)
is assumed. Listing 1 shows an example N-Triples serialization.

<http://base.example.com/me> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> .
<http://base.example.com/me> <http://xmlns.com/foaf/0.1/givenName> "Alice" .
<http://base.example.com/me> <http://xmlns.com/foaf/0.1/familyName> "Rabbit"^^<http://www.w3.org/2001/
XMLSchema#string> .
<http://base.example.com/me> <http://xmlns.com/foaf/0.1/knows> <http://example.org/Bob> .
<http://base.example.com/me> <http://xmlns.com/foaf/0.1/knows> <http://example.org/Carol> .
<http://base.example.com/me> <http://xmlns.com/foaf/0.1/knows> _:ub2bL9C5 .
_:ub2bL9C5 <http://xmlns.com/foaf/0.1/givenName> "Dave" .

<http://example.org/Bob> <http://xmlns.com/foaf/0.1/givenName> "Bob" .
<http://example.org/Bob> <http://xmlns.com/foaf/0.1/familyName> "Builder" .

Listing 1: An example N-Triples document

Turtle
The turtle file format is an extension to N-triples, specifically designed to be easier to
read for humans [27]. It introduces prefixes to reduce the size of each triple, increasing
readability. Each turtle triple is ended using either “;”, “,” or “.”, depending on the
chosen character, your triple shares, respectively, the object, the object and predicate,
or nothing with the previous triple. Blank nodes have some additional syntactic sugar
and can be created using brackets (“[]”) in which the predicate and object belonging to
the blank node are contained. An additional feature is the use of a “base”. Turtle allows
you to specify named nodes (URIs) in relation to a base by using the <> containing a
path instead of a whole URI. The base URI should be provided when parsing the turtle
file. Listing 2 is a turtle serialization of Listing 1 when using the base URI “http://
base.example.com/”.

2.1.2 Concise Bounded Description
The CBD (Concise Bounded Description) [4] of a RDF resource is the set of triples that
can be created as follows:
1. Create a to-visit set equal to the set of triples that has the focussed resource as a

subject

7.

2.1 RDF

@prefix ex: <http://example.org/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
<me> a foaf:Person ;
 foaf:givenName "Alice" ;
 foaf:familyName "Rabbit" ;
Two triples sharing the same subject and predicate
 foaf:knows ex:Bob, ex:Carol ;
A blank node
 foaf:knows
 [
 foaf:givenName "Dave"
] .

ex:Bob
 foaf:givenName "Bob" ;
 foaf:familyName "Builder" .

Listing 2: An example Turtle document
2. Iterate over the triples in the to-visit set and:

i. Add the current triple to the result set.
ii. In case the object of the current triple is not a named node: add all triples with

that object as a subject to the to-visit set.
iii. Remove the current triple from the to-vist set.

In this work we often use “the RDF resource” to refer to the CBD. As an example,
Listing 3 shows the CBD of Listing 2.

@prefix ex: <http://example.org/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
<me> a foaf:Person ;
 foaf:givenName "Alice" ;
 foaf:familyName "Rabbit" ;
 foaf:knows ex:Bob, ex:Carol ;
 foaf:knows [
 foaf:givenName "Dave"
] .

Listing 3: The Concise Bounded Description of <me> from Listing 2

2.2 SPARQL
The SPARQL query language is a declarative query language like, for example, SQL,
but specifically designed for RDF [28]. The query language is very extensive, in this
section we explain what is needed to understand this work.

SPARQL and turtle share a lot of syntax, with a minor nuance in prefix declara-
tion. Turtle uses @PREFIX to define a prefix, while SPARQL just uses PREFIX. Turtle also
expects a dot at the end of a prefix declaration, while SPARQL does not. Additionally,

8.

2 Semantic Web

a query specifies the operation used, like SELECT. Listing 4 shows an example SPARQL
select query.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox WHERE {
 ?x foaf:name ?name .
 ?x foaf:mbox ?mbox
}

Listing 4: An example SPARQL select query

2.2.1 Variable
To select a part of a triple, you use a new variable, denoted by a ? or $ prefix. The
variable “id” would be referenced using ?id. The variable can then be used in a where
clause. The result of a SPARQL select query is a list of bindings that satisfy the pro-
jection of the data through the query.

2.2.2 Functions
Within a query, functions can be used to transform data. We mention the functions
used in this work.
Bind
Binds a certain value, or variable, to a variable. To bind the value “apple” to the vari-
able “pear”, you would use: BIND ("apple" as ?pear).
STR
The STR function gets the raw string representation of a value, for example when
we have a date: "2024-05-08T23:23:56.83Z"^^xsd:dateTime we can get the value between double
quotation marks by using the STR function. STR("2024-05-08T23:23:56.83Z"^^xsd:dateTime) would
evaluate to "2024-05-08T23:23:56.83Z".

2.2.3 Property Paths
Property paths allow you to describe a route between two nodes. In this work, we use
the * property path, which means, following a property/ predicate zero or more times.
To express that we want to bind the variable “location” to each geographic location in
which our variable “city” is located, we could use: ?city ex:locatedIn* ?location.

9.

2.2 SPARQL

2.2.4 Different kind of queries
Until now, we kept it easy by focussing on read queries. Since this work focuses on write
queries, we quickly go over all the different syntaxes SPARQL provides to update a
resource.
Insert Data
An insert data query adds some triples listed to a data source. The operation is struc-
tured as INSERT DATA { ... } replacing the ellipsis with turtle formatted triples.
Delete Data
A delete data query simply removes the triples listed from a data source. If a triple that
should be deleted is not present, it is ignored. The operation is structured as DELETE

DATA { ... } replacing the ellipsis with turtle formatted triples.
Delete / Insert Where
A delete insert query consists of an optional delete clause followed by an optional insert
clause, followed by a where clause. Either the delete or insert clause, or both, need to be
present. When both are present, the query will have a structure like: DELETE { ... } INSERT

{ ... } WHERE { ... }. Unlike the “insert data” and “delete data” queries, these queries can
contain variables. Important to note is that the where clause is evaluated only once. The
resulting bindings are then substituted in both delete and insert clauses, and afterwards
the delete clause is executed followed by the insert clause.
Delete Where
A “delete where” query is an abbreviated form of the above query. The query DELETE

WHERE { content } is equivalent to DELETE { content } where { content }.

2.3 Shape Descriptions
RDF is what they call a schemaless data format, meaning it does not a priori require
a format in which the data will be stored. Other examples of schemaless data are a
MongoDB³ and Redis4. Data with a schema are, for example, your traditional relational

³https://www.mongodb.com/
4https://redis.io/

databases. An in-depth comparison between schema and schemaless data storage is be-
yond the scope of this work.

10.

https://www.mongodb.com/
https://redis.io/

2 Semantic Web

Schemaless data can after the creation still be validated against some schema,
this is useful for application developers that expect the data they consume to be in a
specific format. In this work, we will use schemas to group similar data together. Within
the RDF ecosystem, two schema languages are important, ShEx and SHACL. ShEx
was created out of a community need to describe shapes and has a compact syntax.
SHACL was created later as a W3C recommendation. This work primarily uses SHACL
because it is a W3C recommendation, we assume it will be more future-proof. We will
sporadically use ShEx in this text for its compressed format.

2.3.1 ShEx
A ShEx [10] shape essentially lists properties and their accompanying object type, as
well as the cardinality of that property in relation to the focussed subject. Listing 5
shows a self-explanatory shape example taken from the ShEx website5.

5https://www.w3.org/community/shex/

our EmployeeShape reuses the FOAF ontology
<EmployeeShape> { # An <EmployeeShape> has:
 foaf:givenName xsd:string+, # at least one givenName.
 foaf:familyName xsd:string, # one familyName.
 foaf:phone IRI*, # any number of phone numbers.
 foaf:mbox IRI # one FOAF mbox.
}

Listing 5: Example ShEx shape taken from their website

2.3.2 SHACL
SHACL [9] is extensively used in this work, yet because the different SHACL properties
are rater self-explanatory, we do not give an in-depth explanation on SHACL.

2.4 Interfaces
An interface is the shared boundary between two systems. We are interested in the
boundary between a data owner and a data consumer. In other words, say a data owner
has some RDF data, how does a data consumer gain access to that data. In this work, we
will focus on web interfaces. Numerous RDF interfaces exist, a data owner could choose
to expose all data in a compressed format, use a SPARQL endpoint, use TPF (Triple
Patter Fragments) [12], etc. Another possibility, is to group RDF triples together in dif-

11.

https://www.w3.org/community/shex/
https://www.w3.org/community/shex/
https://www.w3.org/community/shex/
https://www.w3.org/community/shex/
https://www.w3.org/community/shex/

2.4 Interfaces

ferent HTTP documents and provide an interface that links those documents together
accordingly. This essentially creates an endpoint following the REST architecture.

2.4.1 SPARQL endpoint
A SPARQL endpoint is a conceptually simple interface. You ask a SPARQL query to
the interface and you get the result. As an example, Listing 6 shows how to get all
data behind a SPARQL endpoint. Behind the conceptually simple interface is a huge
amount of technical complexity. This technical complexity together with a potentially
large computational cost of a SPARQL endpoint makes it unfit for some use cases.

SELECT ?s ?p ?o WHERE {
 ?s ?p ?o
}

Listing 6: SPARQL query to select all triples

2.4.2 LDP
LDP is a set of rules that allow you to create a simple RESTful interface mimicking
an operating system’s file structure. Within an LDP interface, each HTTP resource
returns RDF triples that either describe some resource, or describe some collection that
contains other RDF resources. Listing 7 shows an example LDP container. An LDP
interface allows CRUD operations through the HTTP methods.

@prefix dcterms: <http://purl.org/dc/terms/>.
@prefix ldp: <http://www.w3.org/ns/ldp#>.
<http://example.org/c1/>
 a ldp:BasicContainer;
 dcterms:title "A very simple container";
 ldp:contains <r1>, <r2>, <r3>.

Listing 7: LDP container example

2.5 Query Engines
Query engines are complex pieces of software that answer queries, like for example
the SPARQL queries seen in Chapter 2.2. The features supported by the engine are
engine-dependent, but they can be extensive. Besides feature support, they can also
perform query optimizations based on things like cardinalities that are either known
from the start, or are discovered during the query process . A query engine aims to
shield the developers from the complexities that are omnipresent when querying data.

12.

2 Semantic Web

These complexities range from different data formats, to different interfaces, to possible
optimizations.

The Comunica query engine [29] has been especially designed to be modular, al-
lowing easy extensibility in the different areas mentioned above. This work will use that
engine because of its modular design, existing feature richness and free software nature.

13.

3 Solid
The Solid project develops a specification that lets individuals and groups store their
data securely in decentralized data stores called Pods [17]. Pods are like secure web
servers for data. When data is stored in a Pod, its owners control which people and
applications can access it. Solid is a specification [30] that builds on top of existing spec-
ifications. The data is stored in RDF format and the interface is constructed through
LDP. However, the existing specifications are not enough as solid faces numerous chal-
lenges because of its innovative decentralized nature. These challenges span across mul-
tiple domains like interface design, query engine design, access control, usage control,
etc. To tackle these challenges, Solid creates some own specifications, but tries to keep
them generic for different use cases.

3.1 Positioning
Throughout this work, we approach the collection of all Solid data stores (pods) as a
permissioned decentralized graph database. It’s important to note that Solid differen-
tiates itself from typical distributed database systems in various ways. A distributed
database will both replicate and shard its data [31]. Replication means that the same
data is stored on multiple machines, and sharding means that one machine does not
hold all the data. We can thus view the data in a distributed database as a collection
of shards, these shards are replicated a configurable amount of times and stored across
different machines. The replication of data can happen in different configurations, each
with their own considerations (the interested reader can read R. Elmasri [31], specif-
ically section 24.1.2). One example consideration is the leader-follower configuration
where each update is performed on the leader while reads are performed on both leader
and followers. The leader is responsible for synchronizing the data updates to the fol-
lowers. Such a configuration chooses for availability before consistency on the CAP
(Consistency, Availability, Partition tolerance) scale because it is possible reads are
outdated and thus inconsistent. The CAP theorem states that when designing a sys-
tem, you can only pick two of the three properties {Consistency, Availability, Partition
tolerance}.

Interestingly, Solid does not introduce any replication across Solid pods. From a
theoretical standpoint, this means that we can view a single Solid pod as a single shard

14.

3 Solid

of our database, and each shard being self governed. As a result of not having data
replication, the Solid specification does not position itself in the CAP space, choosing
neither consistency nor availability.

3.2 Access Control
For each resource, the Access Control describes what actors have access to the resource.
The resource access is often aligned with the CRUD operations, so each operation has
their own set of actors that can perform the action.

3.2.1 WAC
WAC (Web Access Control) [15] is a decentralized cross-domain access control system,
providing a way for Linked Data systems to set authorization conditions on HTTP
resources using the ACL (Access Control List) model using the ACL ontology6. WAC
differentiates four access modes7:

6http://www.w3.org/ns/auth/acl#
7https://solidproject.org/TR/wac#access-modes

1. acl:Read: Allows access to a class of read operations on a resource, e.g., to view the
contents of a resource on HTTP GET requests.

2. acl:Write: Allows access to a class of write operations on a resource, e.g., to create,
delete or modify resources on HTTP PUT, POST, PATCH, DELETE requests.

3. acl:Append: Allows access to a class of append operations on a resource, e.g., to add
information, but not remove, information on HTTP POST, PATCH requests.

4. acl:Control: Allows access to a class of read and write operations on an ACL resource
associated with a resource.

WAC was created with some extensibility in mind. One could use the Access Mode
Extensions8 to define a subclass of a default access mode, like for example acl:read. In-
terestingly, the specification includes the following warning:

8https://solidproject.org/TR/wac#extension-acl-mode

“Servers are strongly discouraged from trusting the information returned by look-
ing up an agent’s WebID for access control purposes. The server operator can also
provide the server with other trusted information to include in the search for a
reason to give the requester the access.”

15.

http://www.w3.org/ns/auth/acl#
http://www.w3.org/ns/auth/acl#
http://www.w3.org/ns/auth/acl#
http://www.w3.org/ns/auth/acl#
http://www.w3.org/ns/auth/acl#
https://solidproject.org/TR/wac#access-modes
https://solidproject.org/TR/wac#extension-acl-mode
https://solidproject.org/TR/wac#extension-acl-mode

3.2 Access Control

This is interesting in the context of solid because it means we are discouraged from
making access rules like: “Access is granted when the requestor is older than 21.” This
consideration was possibly written down to warn readers that servers cannot validate the
data. However, verifiable credentials might be able to change this view. Unfortunately,
a WAC GitHub issue about this is open and inactive9. Listing 8 shows an example WAC
description.

9https://github.com/solid/authorization-panel/issues/79

@prefix acl: <http://www.w3.org/ns/auth/acl#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix alice: <https://example.com/Alice#> .
@prefix bob: <https://example.com/Alice#> .

[
 acl:accessTo alice:card ;
 acl:mode acl:Read ;
 acl:agentClass foaf:Agent
] .
[
 acl:accessTo alice:card ;
 acl:mode acl:Read, acl:Write ;
 acl:agent bob:card
] .

Listing 8: Example WAC description

3.2.2 ACP
ACP (Access Control Policy) [2] is an alternative to WAC and serves as the older sib-
ling. ACP allows you to create matchers over users. These matchers can return a value
true or false based on the agent that requests the resource. Policies are used to connect
matchers to resources, and the access modes used are the same as WAC. We provide
an ACP example in Listing 9.

Altough ACP is more expressive than WAC, neither of the solutions are perfect.
They both lack the true meaning behind a policy. ACP requires you to provide a rule
for each resource, but has no way to generalize resources. I might, for example, want to
create an access control resource that grands Alice access to the subset of my pictures
that they are contained in. Since rules relate to a specific resource, ACP and WAC lack
the ability to express this.

16.

3 Solid

ex:accessControlResourceA
 acp:resource ex:resourceX ;
 acp:accessControl [
 acp:deny acl:Read, acl:Write ;
 acp:anyOf [
 acp:client acp:PublicClient ;
] ;
 acp:noneOf [
 acp:client ex:clientC
] ;
] .

Listing 9: Example ACP description

3.3 Usage Control
Beyond access control, the Solid Community is increasingly investigating usage control
solutions. Usage Control takes access control that decides whether you have access to
a resource, and expands on it by describing how you can get access [32]. Additionally,
it describes what you can do with the resource after access has been granted. These
permissions are related to the deontic concepts: Permission, Prohibition, Obligation and
Dispensation.

3.4 Pod Descriptions
A Solid pod following the current specification has an LDP interface. Such an interface
is unstructured by design, forcing a data consumer to traverse all links in the same pod
to get a complete pod overview. If completeness is of importance, this makes an LDP
interface worse than a bulk download. To avoid this, a pod can have an index that can
be used to speed up query execution. When creating an index, special care should be
given to not leak information about the data stored in the pod that the requestor would
not have access to.

3.4.1 Type Index
The first index proposed for Solid was the Type Indexes specification [22]. It suggests
two indexes, a private and a public index. Each index contains entries that map a certain
RDF type to a set of HTTP resources. Listing 10 shows a type index that states that
RDF resources that have a tuple like <s rdf:type vcard:AddressBook> can be found at path /

public/contacts/myPublicAddressBook.ttl.

17.

3.4 Pod Descriptions

Besides the low granularity type indexes allow, they are inherently flawed because
the access of resources cannot be grouped into “public” and “private” since more com-
plex access control policies are the norm.

@prefix solid: <http://www.w3.org/ns/solid/terms#>.
@prefix vcard: <http://www.w3.org/2006/vcard/ns#>.
@prefix bk: <http://www.w3.org/2002/01/bookmark#>.

<>
 a solid:TypeIndex ;
 a solid:ListedDocument.

<#ab09fd> a solid:TypeRegistration;
 solid:forClass vcard:AddressBook;
 solid:instance </public/contacts/myPublicAddressBook.ttl>.

Listing 10: An example type index

3.4.2 Shape Tree
Shape Trees [23] are the proposed replacement for the Type Indexes. The specification
uses shape descriptions like ShEx and SHACL to validate RDF graphs against a set
of conditions. Shape trees can be used in combination with protocols that organize
Linked Data graphs into resource hierarchies, expressing the layout of the resources and
associating those resources with their respective shapes. It is the natural extension of
shape descriptions to those resource hierarchies.

The shape tree specification can be used on top of any technology platform that
supports the notion of containers and resources, but it is mostly used on top of LDP.
The shape tree specification defines a predicate st:contains that asserts a “physical” hi-
erarchy. The “physical” containment is defined as LDP containments. The shape tree
specification also defines virtual containment, this is just another way of realizing di-
rectories above the underlying LDP specification. It means you do not need ldp:contains

for defining containers, but can define another predicate, and use that predicate to cre-
ate directories. Essentially, it makes you able to view ex:apple1 and ex:apple2 as containing
resources of ex:appleTree as seen in Listing 11.

By creating a graph of shape descriptions, access control using shape trees has a
finer granularity compared to Type Indexes. Each Subtree can be exposed through its
HTTP resource and can therefore have their own access control policies. The privacy
of a user can thus be protected by exposing a shape tree in a small documents.

18.

3 Solid

@prefix ex: <http://example.org/> .
ex:appleTree
 ex:hasFruits ex:apple1, ex:apple2.

<#VirtualAppleTree>
 a st:ShapeTree ;
 st:expectsType st:Resource ;
 st:shape ex:AppleTreeShape ;
 st:references [
 st:referencesShapeTree <#VirtualAppel> ;
 st:viaPredicate ex:hasFruits
] .

<#VirtualAppel>
 a st:ShapeTree ;
 st:expectsType st:Resource ;
 st:shape ex:AppleShape ;

Listing 11: Shape tree example: resource (left) can be described by a shape tree (right)

3.5 Solid Interoperability
The Solid Interoperability specification [33] is a big specification that essentially ties to-
gether the smaller specifications and offers some usage patterns. It essentially describes
how applications should work together to ensure a coherent data ecosystem.

The specification differentiates social agents (individual, group, or organization)
and applications, considering both to be agents. Social agents choose to use certain
applications and register/ manage them and their access rights in a private document.
It considers data to be stored in data registries, each indexed using a shape tree, and
describes that resource names should be unpredictable. The unpredictability is impor-
tant for the privacy of data owners. The specification also describes how one can request
access to a resource and a way of storing what access rights have been granted.

19.

4 Use Case
In this work, we will work with a social media use case where a pod contains the so-
cial media data of a single user. This use case follows the LDBC SNB (Social Network
Benchmark) [11] use case. Every person has information about themselves and can cre-
ate posts and comments. Both posts and comments are messages, and a comment is a
reply to some message. Messages have an ID, a browser, a location IP, content, tags,
and a creator. Figure 6 shows the schema used within this use case as copied from the
LDBC SNB10 GitHub. Listing 12 and Listing 13 show two example queries over the
SNB data that respectively read, and write data.

10https://github.com/ldbc/ldbc_snb_datagen_hadoop#graph-schema

Figure 6: Social Network Benchmark data schema

20.

https://github.com/ldbc/ldbc_snb_datagen_hadoop#graph-schema
https://github.com/ldbc/ldbc_snb_datagen_hadoop#graph-schema
https://github.com/ldbc/ldbc_snb_datagen_hadoop#graph-schema
https://github.com/ldbc/ldbc_snb_datagen_hadoop#graph-schema
https://github.com/ldbc/ldbc_snb_datagen_hadoop#graph-schema

4 Use Case

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX snvoc: <http://localhost:3000/www.ldbc.eu/ldbc_socialnet/1.0/vocabulary/>
SELECT ?firstName ?lastName ?birthday ?locationIP ?browserUsed ?cityId ?gender ?creationDate
WHERE {
 <https://example.com/Alice/profile/card#me> rdf:type snvoc:Person;
 snvoc:id ?personId;
 snvoc:firstName ?firstName;
 snvoc:lastName ?lastName;
 snvoc:gender ?gender;
 snvoc:birthday ?birthday;
 snvoc:creationDate ?creationDate;
 snvoc:locationIP ?locationIP;
 snvoc:isLocatedIn ?city.
 ?city snvoc:id ?cityId.
 <https://example.com/Alice/profile/card#me> snvoc:browserUsed ?browserUsed.
}

Listing 12: Example LDBC SNB read query

prefix ns1: <http://localhost:3000/www.ldbc.eu/ldbc_socialnet/1.0/vocabulary/>
prefix xsd: <http://www.w3.org/2001/XMLSchema#>
prefix tag: <http://localhost:3000/www.ldbc.eu/ldbc_socialnet/1.0/tag/>
prefix resource: <http://localhost:3000/dbpedia.org/resource/>

INSERT DATA {
 <http://example.com/Alice/Posts#416608218494388> a ns1:Post ;
 ns1:browserUsed "Chrome" ;
 ns1:content
 "I want to eat an apple while scavenging for mushrooms in the forest." ;
 ns1:creationDate "2024-05-08T23:23:56.830000+00:00"^^xsd:dateTime ;
 ns1:id "416608218494388"^^xsd:long ;
 ns1:hasCreator <http://example.com/Alice/profile/card#me> ;
 ns1:hasTag tag:Alanis_Morissette, tag:Austria ;
 ns1:isLocatedIn resource:China ;
 ns1:locationIP "1.83.28.23" .
}

Listing 13: Example LDBC SNB write query

21.

5 Storage Guidance Vocabulary
To empower automated clients to correctly store RDF resources, we suggest the usage
of a descriptive vocabulary. Existing structure definitions of data spaces like Type In-
dex [22] and Shape Trees [23] focus on read queries and insufficiently support write
queries. These structure definitions fail to express the underlying decision-making of
why a resource is stored where it is. As an example, we give a small list of questions
that cannot be answered by either data store descriptions:
1. What if multiple directories match? Do I duplicate the resource?
2. What should I do if no documents match?
3. How are resources grouped?

i. Can I infer that resources grouped by a property are always grouped by that
property?

ii. Does that mean that if I get a new object for that property that I can just create
a new document?

4. What should I do when I update a resource?
i. Should I alter the data store description?
ii. Should I move the resource? (Assign a new named node?)

5. Are all clients equal? Do they all abide the structural information description?
To answer these questions, we develop a new vocabulary, namely, SGV (Storage
Guidance Vocabulary). This vocabulary takes inspiration from the Shape Tree Speci-
fication, but does not extend it. The vocabulary aims to express where a resource is
stored and why. SGV is created with a primary focus on LDP [7] interfaces, extending
LDP containers to be structured. A container marked as structured has a strict defin-
ition of where containing containers/resources are located. We shortly introduce some
basic concepts in SGV:
Resource Collection: Corresponds to a group of RDF resources.
Unstructured Collection: Corresponds to a classical LDP container or HTTP re-
source
Structured Collection: A canonical or derived collection. (below)
Canonical Collection: A resource collection containing resources.

22.

5 Storage Guidance Vocabulary

Derived Collection: A resource collection that stores resources already stored by
one or more other structured containers.
Resource Description: A way of describing resources, for example through ShEx
or SHACL.
Group Strategy: A description of how resources should be grouped together, for
example: my images are grouped per creation date.
Store Condition: When multiple collections are eligible to store a resource, the store
condition decides what collection(s) actually store the resource. Allowing the creation
of a store priority system.
Update Condition: Describes what to do when a containing resource is changed.
Client Control: Describes the amount of freedom a client has when trying to store
a resource.

We will first describe two simple flows, the creation, and the modification of an RDF
resource. This should provide an idea of what SGV tries to accomplish without going
into all the details first. After explaining the two example flows, we will look into the
details of SGV.

5.1 Flow: A client wants to create an RDF-resource
Inserts happen on a pod level, meaning you specify to the client what pod you’d want
to insert a resource to. The client will then discover a fitting location for the resource.
Listing 14 is an example query that would trigger the resource creation flow.

An automated client is now required to discover the base (<>) of this query. The
client will follow the flow described below and visualized in Figure 7.
1. The client gets the SGV description of the storage space (can be cached).
2. The client checks all canonical collections and checks if the resource to be inserted

matches a resource description of the collection.
3. If the resource matches a description, the client checks the store condition of the

description given the eligible collections.
4. For each collection that stores the resource:

i. The client checks the group strategy of the collection and groups the resource
accordingly, deciding on the name of the new resource.

23.

5.1 Flow: A client wants to create an RDF-resource

ii. The client checks the collections that are derived from this collection. Step 4 is
executed for all collections that are derived from this collection, and the resource
matches the description.

5. The client performs the store operation.

prefix ns1: <http://localhost:3000/www.ldbc.eu/ldbc_socialnet/1.0/vocabulary/>
prefix xsd: <http://www.w3.org/2001/XMLSchema#>
prefix card: <http://localhost:3000/pods/00000000000000000096/profile/card#>
prefix tag: <http://localhost:3000/www.ldbc.eu/ldbc_socialnet/1.0/tag/>
prefix resource: <http://localhost:3000/dbpedia.org/resource/>

INSERT DATA {
 <> a ns1:Post ;
 ns1:browserUsed "Chrome" ;
 ns1:content
 "I want to eat an apple while scavenging for mushrooms in the forest." ;
 ns1:creationDate "2024-05-08T23:23:56.830000+00:00"^^xsd:dateTime ;
 ns1:id "416608218494388"^^xsd:long ;
 ns1:hasCreator card:me ;
 ns1:hasTag tag:Alanis_Morissette, tag:Austria ;
 ns1:isLocatedIn resource:China ;
 ns1:locationIP "1.83.28.23" .
}

Listing 14: Example resource insertion query

5.2 Flow: A client wants to update an RDF-resource
An update can be both an insert to an existing resource, a change in values of a resource,
or a deletion of the whole, or part of a resource. In case of an update, it’s important
that the client knows what resource will be updated. This is similar to how queries are
executed right now, where you should always specify the HTTP resource to query over
(excluding link-traversal clients).

The flow of an automated client is depicted in Figure 8 and described further below.
1. The client gets the SGV description of the storage space and the HTTP resource

containing the updated RDF resource.
2. The client virtually constructs the resource that would result from the requested

operation.
3. The client check the update condition of the original matching resource description.

Following action depends on the update condition. Typically, the update-condition
will say whether an RDF resource is moved or not.

24.

5 Storage Guidance Vocabulary

Figure 7: Flow: create RDF resource
i. Move required: remove the existing resource and follow the steps described in

Chapter 5.1.
ii. No move required: just update the resource as requested by the user.

5.3 Details
This section delves into the details of SGV. The vocabulary is constructed with future
expansions in mind, missing features could thus be added by other actors. In Figure 10
an overview of the different components can be consulted. The figure can be used as
a reference while reading the different sections. There are three arrows used in the
graph, each with a different meaning, visualized in Figure 9. Firstly, a full arrow means
that there can be a triple ?a ldp:contains ?b. Secondly, the dotted arrow means that the
destination has the same fields or more as the source. Finally, a diamond shaped arrow
entails a link from the source to the destination, specifically, the destination can be
considered a property of the source. Listing 15 is provided as an example description

25.

5.3 Details

Figure 8: Flow: update RDF resource
to help clarify the vocabulary. For completeness, we also provide the ShEx description
of the vocabulary in Listing 16.

Figure 9: A legend explaining the links used in Figure 10
26.

5 Storage Guidance Vocabulary

Figure 10: Visualisation of the Storage Guidance Vocabulary

5.3.1 Resource Collection
An sgv:resource-collection is any RDF resource that groups multiple RDF resources together.
This grouping into a collection can be done in either an explicitly structured or un-
structured way. Note that we group RDF resources, a collection can either be an LDP
Container, or an HTTP resource.

5.3.2 Unstructured Collection
An unstructured collection is a kind of resource collection (Section 5.3.1), that does
not explicitly define its structure. This work’s primary focus is to enable automated
clients to perform insert queries over LDP interfaces. It might help to see the type
sgv:unstructured-collection as similar to the ldp:Container type.

5.3.3 Structured Collection
An sgv:structured-collection is a resource collection (Section 5.3.1) that explicitly describes its
structure. The collection defines a filter, each resource is compared against this filter. If

27.

5.3 Details

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix sh: <http://www.w3.org/ns/shacl#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix ex: <http://example.org/> .
@prefix sgv: <https://example.org/storage-guidance-vocabulary#> .
@prefix ldp: <http://www.w3.org/ns/ldp#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix ldbc: <http://www.ldbc.eu/ldbc_socialnet/1.0/vocabulary/> .
@prefix dbo: <https://dbpedia.org/ontology> .

<> a ldp:Container, sgv:unstructured-collection ;
 sgv:client-control [
 a sgv:allow-when-not-claimed ;
] ;
 sgv:one-file-one-resource "false"^^xsd:boolean .

An unstructured collection contains a structured collection "posts"
<posts/> a ldp:Container, sgv:structured-collection, sgv:canonical-collection ;
 sgv:one-file-one-resource "false"^^xsd:boolean ;
 sgv:store-condition [
 a sgv:always-stored ;
 sgv:update-condition [
 a sgv:update-prefer-static ;
 sgv:resource-description [
 a sgv:shacl-descriptor ;
 sgv:shacl-shape <sgv#postShape> ;
] ;
] ;
] ;
 sgv:group-strategy [
 a sgv:group-strategty-uri-template ;
 sgv:uri-template
 '{http%3A%2F%2Fwww.ldbc.eu%2Fldbc_socialnet%2F1.0%2Fvocabulary%2FisLocatedIn}#{::UUID_V4}' ;
 sgv:regexMatch '([^/]+)#([^#]+)$' ;
 sgv:regexReplace '$1/$2' ;
] .

<sgv#postShape>
 a sh:NodeShape ;
 sh:property [
 sh:path rdf:type ;
 sh:hasValue ldbc:Post ;
] ;
 sh:property [
 sh:path ldbc:creationDate ;
 sh:datatype xsd:dateTime ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
] ;
 sh:property [
 sh:path ldbc:id ;
 sh:datatype xsd:long ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
] .

Listing 15: Example pod description using Storage Guidance Vocabulary
a resource passes, the resource is stored into the collection. The collection later defines
where the resource should be stored. Where a normal resource collection can contain
resources in a graph structure, a structured container adds the important restriction

28.

5 Storage Guidance Vocabulary

PREFIX sgv: <https://thesis.jitsedesmet.be/solution/storage-
guidance-vocabulary/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-
ns#>
PREFIX ldes: <https://w3id.org/ldes#>
PREFIX tree: <https://w3id.org/tree#>

<ResourceCollectionShape> {
 rdf:type [sgv:resource-collection] ;
 sgv:client-control {
 rdf:type [
 sgv:free-client sgv:additional-allowed
 sgv:allowed-when-not-preffered
 sgv:allow-when-not-claimed sgv:no-control
] ;
 } ? ;
 sgv:one-file-one-resource xsd:boolean ? ;
}

<StructuredCollectionShape> {
 &<ResourceCollectionShape> ;
 rdf:type [sgv:structured-collection] ;
 sgv:group-strategy <GroupStrategyShape> ;
Copied from the LDES vocabulary, fan of the idea!
 sgv:retention-policy {
 rdf:type ldes:DurationAgoPolicy ;
 tree:value xsd:duration ;
 } ?
}

<CanonicalCollectionShape> {
 &<StructuredCollectionShape> ;
 sgv:store-condition {
 rdf:type [
 sgv:state-required sgv:always-stored
 sgv:prefer-other sgv:prefer-most-specific
 sgv:only-stored-when-not-redundant sgv:store-never
] ;
 sgv:update-condition <UpdateConditionShape>
 } + ;
}

<DerivedCollectionShape> {
 &<CanonicalCollectionShape> ;
 sgv:derived-from {
 sgv:resource-descripion <ResourceDescriptionShape> ;
 sgv:source IRI ;
 sgv:filter xsd:string ;
 } +
}

Any ldp:Container in a structured collection is a
GroupedCollection
<GroupedCollection> {
 &<GroupStrategyShape>
}

<GroupStrategyShape> {
 (rdf:type sgv:group-strategty-uri-template ;
 sgv:uri-template xsd:string ;
 sgv:regexMatch xsd:string ;
 sgv:refexReplace xsd:string ;
)|(
 rdf:type sgv:group-strategy-sparql ;
 sgv:sparql-query xsd:string ;
)}

<UpdateConditionShape> {
 (
 rdf:type [
 sgv:update-keep-always sgv:prefer-static sgv:best-
matched
 sgv:update-disallow sgv:removal-only sgv:state-
dependent
] ;
 |
 rdf:type [sgv:keep-distance] ;
 sgv:distance xsd:decimal ;
 sgv:original-description <ResourceDescriptionShape> ;
) ;
 sgv:resource-descripion <ResourceDescriptionShape> ;
}

<ResourceDescriptionShape> {
 rdf:type sgv:shacl-descriptor ;
 sgv:shacl-shape IRI ;
}

Listing 16: Shape description of Storage Guidance Vocabulary. Starts left, continues on the right.
of a tree. It has been proven that this tree structure limitation heavily restricts the
interface [34].

5.3.4 Canonical Collection
A sgv:canonical-collection is a structured collection (Section 5.3.2) that stores RDF resources.
When entering a Solid pod, we check what canonical containers want to store the re-
source. The collections then individually decide where to store the resource, given the
other collections that are eligible to store.

29.

5.3 Details

5.3.5 Derived Collection
A sgv:derived-collection is a structured collection (Section 5.3.3) that contains (part of)
resources contained in one or more other collections. Existing work around derived
resources in solid specifies a “template”, “selector” and “filter” [35]. SGV uses those
same components but in a different format. The template describes where the resource
should be stored, in SGV this is done using the group strategy (Section 5.3.8). The
selector describes what resources are derived. In SGV the selector is a combination of
the Resource Description and Source in the “Derived from” node. As for the filter or
projection, SGV uses a construct query over the RDF resource. This is different from
the work of J. Van Herwegen and R. Verborgh where the construct if performed on
HTTP resources which contain multiple resources [35]. In case no filter is present, each
resource is derived as a whole. A derived collection without a filter defined on a pod
with the “one file one resource” flag, can use soft/ hard links, and thus has a very
low cost.

When a structured collection inserts, updates or removes an RDF resource, the
collections that derive from that collection are informed to act accordingly. A derived
collection can be used to create collections and knows a multitude of use cases, some
examples are:
• Create a collection of all pictures in my pod, even though I have multiple canonical

collections managing pictures.
• Create a restricted view of resources that I could then use to share with others.

5.3.6 Grouped Collection
Every LDP container contained in a structured collection (Section 5.3.3) is a grouped
collection. Grouped collections are used to group resources in structured collections
together to provide additional structure. This reduces cognitive load when browsing a
collection. Figure 11 visualizes two ways of organizing images, on the left by city and
depicted person, and on the right by creation date and depicted person.

5.3.7 Resource Description
Both the canonical collection (Section 5.3.4) and the derived collection (Section 5.3.5)
require a description of the RDF resources contained. The description is used to filter

30.

5 Storage Guidance Vocabulary

└─ pictures/
├─ Valencia/
│ ├─ Klaas.ttl
│ └─ Jitse.ttl
├─ Ghent/
│ ├─ Simon.ttl
│ └─ Hoyyiw.ttl
└─ Paris/
├─ Jonas.ttl
├─ Ana.ttl
└─ Liesbet.ttl

└─ pictures/
├─ 30-01-2024/
│ ├─ Erin.ttl
│ └─ Oscar.ttl
├─ 14-02-2024/
│ ├─ Henri.ttl
│ └─ Snil.ttl
└─ 17-05-2023/
├─ Ghent/
│ ├─ Maurice.ttl
│ └─ Lars.ttl
└─ Paris/

└─ Simon.ttl
Figure 11: Two Example Group Strategies

resources to be inserted in the pod, and could be used as an index when querying
the pod efficiently using link traversal [21]. A structured collection should thus never
contain a resource that does not match the shape description. Two popular choices for
describing a resource are ShEx and SHACL.

Shape descriptions are powerful and allow expressing complicated expressions in-
cluding logical constraint components¹¹ and property pair constraint components¹².

¹¹https://www.w3.org/TR/shacl/#core-components-logical
¹²https://www.w3.org/TR/shacl/#core-components-property-pairs

Logical constraint components allow you to perform boolean operations on existing
shapes, through: sh:not, sh:and, sh:or, and sh:xone. This allows you to split shapes into parts,
these parts could be evaluated once and the result of the evaluation can be shared
with other shapes. The sharing of evaluation effectively creates a cache. Property pair
constraint components allow you to assert relations between two values present within
the same shape.

5.3.8 Group Strategy
A group strategy expresses how a structured collection (Section 5.3.3) should group
RDF resources in grouped collections (Section 5.3.6). Every structured container de-
scribes one group strategy. A grouped collection can choose to define its group strategy,
thereby overruling the group strategy of the structured collection it resides in.

A group strategy maps each RDF resource to part of a URI. The concatenation of
the structured collection URI, and the provided part should result in the URI of the re-
sulting resource. A grouped collection with URI https://example.com/pictures/Valencia/ together
with a resulting strategy of Alice.ttl would thus result in https://example.com/pictures/Valencia/

31.

https://www.w3.org/TR/shacl/#core-components-logical
https://www.w3.org/TR/shacl/#core-components-property-pairs

5.3 Details

Alice.ttl. We suggest two possible ways of grouping resources, closed world through URI-
templates [36], or open world through a SPARQL query.
URI Templates
Through URI templates, one can construct a URI based on some context variables.
Given the variables var := "value" and hello := "Hello World!" the URI template base/{var}/

{hello} would expand to base/value/Hello%20World%21. The context available is the CBD [4]
of the RDF resource. Since only properties described in the resource description
are guaranteed to be present, only those should be accessed in the URI template.
The context is referenced by entering the percent encoded [37] representation of the
predicate URI. When multiple predicates need to be followed, we separate them
using the “/” which is a character that is not present in URI encoded strings.
The template {https%3A%2F%2Fexample.com%2Fowns-house/https%3A%2F%2Fexample.com%2Faddress} eval-
uated over Listing 17 would expand to the percent encoded representation of “Front
Street 1”: Front%20Street%201.

Just like we use the “/” to convey special meaning, we also use the “:” to access
special variables. We can use the “:” because it is encoded by percent encoding, and
is unused by URI-templates. We currently support only one special variable, being
“UUID_V4”. As an example, the URI template one-file#{:UUID_V4} could expand to one-

file#956242de-2c18-4985-8e9e-d490bc8f97b6.
URI templates by themselves do not allow very complex structures. SGV therefore

allows you to express a regex replace over the result of the template.

@prefix ex: <https://example.com/> .
ex:Alice a ex:Person ;
 ex:owns-house
 [
 ex:address "Front Street 1"
] .

Listing 17: Simple resource with blank nodes

SPARQL Query
The URI template solution above, although simple in use, has the disadvantage that
you can only access the RDF resource itself. To accommodate this shortcoming, we also
suggest the use of a SPARQL query that can access the world if it pleases. We could,
for example, create a SPARQL query that groups pictures in directories based on the

32.

5 Storage Guidance Vocabulary

creation date and the country a picture was taken in, such as France-23-07-2023. When we
assume an image only contains the city it was made in, we would need to discover the
country the city is in.

We suggest a SPARQL query that uses the variable ?key. This variable is bounded
to the (temporary) named node of the RDF resource. The query expects the return of a
variable ?value returning the location of the resource relative to the collection. Listing 18
shows an example grouping SPARQL query.

It’s possible the query needs to be evaluated over other sources to discover required
information. For example, the query above might find its city/country data through
data made available by Wikidata¹³. A federated query allows us to dereference different

¹³https://www.wikidata.org/wiki/

sources. This could be used as an attack vector if a bad actor creates a collection that
contains everything and then uses the SPARQL query to pass through sensitive infor-
mation to its own endpoint [38]. We therefore suggest that a pod lists trusted sources
in some top-level resource. This would mean that query federation happens top level.
R. Taelman and R. Verborgh describe many more possible security issues in their pa-
per [38].

PREFIX ex: <http://example.org/>
SELECT ?key ?value where {
 BIND(CONCAT(STR(?name), "-", STR(?date)) as ?value) .
 ?key ex:creationDate ?date;
 ?key ex:location [
 ex:locatedIn* [
 a ex:country ;
 ex:label ?name ;
] .
] .
}
LIMIT 1

Listing 18: Example group strategy SPARQL query

5.3.9 Store Condition
The store condition decides when an RDF resource is stored, given all canonical collec-
tions (Section 5.3.4) that are eligible to store the resource. Optionally, additional context
could be given as input to the store condition. A canonical collection can have multiple
store conditions, and each store condition has an update condition (Section 5.3.10) and
therefore a resource description (Section 5.3.7). We suggest six store conditions: 1. state

33.

https://www.wikidata.org/wiki/

5.3 Details

required, and 2. always stored, and 3. prefer other, and 4. prefer most specific, and 5.
only stored when not redundant, and 6. never.
State Required
The state required store condition is a simple SPARQL query over the current Solid
pod. The expected returning ?value variable is coerced to a boolean, if true, the resource
is stored in the collection. The store condition allows for flexible additional features like
a basic locking mechanism, where a store is only allowed in case a lock is not present.
Always Stored
A basic store condition, we always store the resource.
Prefer Other
This store condition indicates another collection takes precedence to store over this one.

I could, for example, have the canonical collections “family pictures” and “pictures”.
Instead of creating a complex shape description for my “pictures” that excludes the
shape of “family pictures”, I could just say that the “family picture” collection takes
precedence over the “pictures” collection. This example is written out in Listing 19.

@prefix ex: <https://example.com/> .
@prefix sgv: <https://example.com/storage-guidance-vocabulary#> .

ex:Pictures a sgv:canonical-collection ;
 sgv:store-condition
 [
 a sgv:prefer-other ;
 sgv:other ex:FamilyPictures ;
] .

Listing 19: Example prefer other SGV description

Prefer Most Specific
This store condition specifies that this collection would only store in case its resource
description is the most specific to the RDF resource in focus. It uses a distance func-
tion to measure how good the resource description describes the resource. A distance
function could be the inverse of “the number of triples a projection of the resource by
the description would cover”.

We clarify using an example. It’s important to note that the example is by no
means a “good” distance function, we just wish to mention it is possible. Listing 20
describes a person with their name, alternative name and birthdate. Assume we have

34.

5 Storage Guidance Vocabulary

the two SHACL resource descriptions listed in Listing 21. After projection, we would
get 1 triple for the left description, being:

<http://example.org/Alice> <http://example.org/birthdate> "1865-10-01T00:00:00Z"^^<http://www.w3.org/
2001/XMLSchema#dateTime> .

The right description would return the two triples listed below. The shape projection
on the right results in the most triples after projection and would thus have the lowest
distance.

<http://example.org/Alice> <http://example.org/birthName> "Alice"@en .
<http://example.org/Alice> <http://example.org/alternativeName> "Rabbit"@en .

@prefix ex: <http://example.org/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
ex:Alice a ex:Person ;
 ex:birthName "Alice"@en ;
 ex:alternativeName "Rabbit"@en ;
 ex:birthdate "1865-10-01T00:00:00Z"^^xsd:dateTime .

Listing 20: RDF description of a person

@prefix ex: <http://example.org/> .
@prefix sh: <http://www.w3.org/ns/shacl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

ex:left-shape a ex:Shape ;
 sh:property
 [
 sh:path ex:brithdate ;
 sh:nodeKind sh:Literal ;
 sh:datatype xsd:dateTime ;
 sh:minCount 1 ;
 sh:maxCount 1 ;
] .

@prefix ex: <http://example.org/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-
ns#> .
@prefix sh: <http://www.w3.org/ns/shacl#> .
ex:right-shape a ex:Shape ;
 sh:property
 [
 sh:path ex:brithName ;
 sh:nodeKind sh:Literal ;
 sh:datatype rdf:langString ;
 sh:minCount 1 ;
] ;
 sh:property
 [
 sh:path ex:alternativeName ;
 sh:nodeKind sh:Literal ;
 sh:datatype rdf:langString ;
 sh:minCount 1 ;
] .

Listing 21: Two open shape descriptions of the person in Listing 20

Only Stored When Not Redundant
The “only stored when not redundant” store condition stores only if no other collec-
tion stores the resource. When choosing between two collections that both have this
condition, we select the collection with a named node that is alphabetically first. This
condition can be used to create some kind of inbox collection containing resources that
do not yet have a dedicated collection. The pod owner could then manually go over the

35.

5.3 Details

inbox and create the required collections. This would primarily be the case for power
users that want full control of their storage.
Never
The store condition “never” is fairly simple, it means no new resource should be stored
in this collection. We use this condition when we want to have a collection that contains
resources, but cannot get new resources.

5.3.10 Update condition
When an RDF resource is updated, the update condition with the shape description
matching the original resource is consulted. To prevent links from breaking, we also
suppose the optional usage of a forward referencing pattern, preventing links to break
in clients that are aware of this. So when resource ex:orininal-name is moved to ex:new-name,
there will be a tuple that describes just that: ex:original-name sgv:moved-to ex:new-name. Servers
could also be made aware of this triple, returning a 301 redirect to ex:new-name. A move
procedure works by removing the existing resource and then inserting the resource in
the pod using the insert procedure. We propose multiple update conditions: 1. always
keep, and 2. keep distance, and 3. prefer static, and 4. best match, and 5. disallow.
Always Keep
When using the always keep update condition, it does not matter how the resource has
been manipulated, the resource will stay in the collection. In case the resource descrip-
tion does not match the updated resource, it should be changed in such a way that it
matches the original description and the updated resource.
Keep Distance
The “keep distance” update condition works similar to the “always keep” condition, but
places a limit on how much a resource description can stretch from its original form.
To implement this update condition, we require some distance metric between shape
descriptions. When the distance grows too big, the original description is reapplied and
resources not matching the description are moved.

To our knowledge, there does not yet exist a distance metric to see how much two
shape descriptions differ, only whether two descriptions are contained [39]. An example
metric could be inspired by the Levenshtein distance where, we count the number of
additions and deletions of a SHACL properties. Let’s say each addition or deletion has

36.

5 Storage Guidance Vocabulary

a cost of 1. The distance between the shapes in Listing 21 would be three because to
go from the left description to the right, three operations are required:
1. Remove the property with a path of ex:birthdate.
2. Add the property with a path of ex:birthName.
3. Add the property with a path of ex:alternativeName.
Prefer Static
The “prefer static” update condition will keep a resource in the current collection as
long as the resource matches a resource description of the current collection, and move
the resource when it does not.
Best Match
The “best match update” condition will discover the collection the updated resource
would be placed in, and moves the resource in case this collection and the current col-
lection are not the same.
Disallow
The “disallow” update condition rejects any update made to the resource.
Removal Only
The “removal only” update condition rejects all updates except the full removal of the
resource.
State Dependent
Like the “state required” store condition, this update condition allows you to create a
SPARQL query. A return variable of a simple update condition is expected.

5.3.11 Client Control
Each resource collection (Section 5.3.1) can specify the level of freedom a client/ actor
has to deviate from the SGV. A few example control policies are discussed: 1. free client,
and 2. additional allowed, and 3. allowed when not preferred, and 4. allowed when not
claimed, and 5. no control. Important to note, no client control allows a client to enter
an invalid state. When a state would be invalid to the SGV description, the client needs
to update the description.
Free Client
A collection that specifies a client is free, specifies that the client itself can choose where
a resource is stored. Since the collection still needs to be in a correct state, the client

37.

5.3 Details

might have to edit SGV descriptions. Take again the example of “pictures” and “family
pictures” collections, where normally a picture matching the family picture description,
would be placed in that collection. A free client might choose to store the resource only
in the general pictures collection and not in the family pictures collection. They can
choose to do this without changing the SGV description.
Additional Allowed
The “additional allowed” client control describes that the client might decide that a
canonical container stores a resource it would normally not. Take the pictures example
above, the client might decide to store a family picture in both collections.
Allowed When Not Preferred
The “allowed when not preferred” client control states that a client may decide where
to store a resource when no collection explicitly wants to store the resource. The col-
lections that want to explicitly store a resource are those collections that would store
a resource, but do not have the store condition (Section 5.3.9) “only stored when not
redundant”. The idea here is that that store condition is only used for those collections
that are a last resort to saving a resource automatically. A client can in this case see
this last resort option and perform a more suitable action.
Allowed When Not Claimed
The “allowed when not claimed” client control policy describes that a client may decide
where to store a resource in case no collection wants to store the resource. This policy
deviates from the “allowed when not preferred” policy because this one does not have
a store condition filter.
No Control
The “no control” client control allows no deviation from the SGV rules. If a resource is
not stored, it will not be stored.

5.3.12 One File One Resource
A big advantage of LDP is that it easily maps to the file structure storage of a typical
file systems. If someone wants to store their Solid Pods on their own machine, it’s easy
for them to access the data. The one file one resource flag signals an LDP server that

38.

5 Storage Guidance Vocabulary

no HTTP fragments14 are present in the named nodes in this collection. The server can
therefore use soft-links or hard-links to reduce the physical data duplication.

14https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Identifying_
resources_on_the_Web#fragment

5.3.13 Retention Policy
As a little extra, SGV could be expanded with retention policies like those present in
LDES [6].

5.4 Use Case: No Collection Claims Resource
Now that the details are understood, we sketch 3 cases of handling resources that are
not claimed. We propose either notifying the owner, letting the client assume a location,
or to deny the operation.

5.4.1 Notification
When the owner would like to receive a notification when a resource is not claimed by
their pod, they would create a “SGV notification” collection. That collection would have
a resource description that matches any resource and a corresponding store condition of
“only stored when not redundant”. If the pod owner wants to force a client into this use
case, the root resource collection would need a client control to be set to “no control”.
When the user of the client is also the pod owner, the client could provide the user with
a popup requesting to handle the notification immediately.

5.4.2 Assume
In the case that a pod owner would want the client to assume the location, root resource
collection would need a policy less strict than “no control”. In addition, no notification
collection as described above can be present if the client control would be “allowed when
not claimed”.

5.4.3 Deny
In case the pod owner never wants to store a resource that cannot be stored by their
SGV description, the root resource collection would need to have a client control of “no
control” and no notification collection should be made.

39.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Identifying_resources_on_the_Web#fragment

6 Evaluation
This chapter provides an extensive evaluation of SGV introduced in Part 5. To evaluate
the vocabulary, we implemented a query engine with a minimal set of features from
SGV. After discussing the implementation, we shortly discuss the theoretical cost of
our operations. We finish with an empirical evaluation of the query engine.

6.1 Implementation
To analyse the capabilities of SGV, we implemented a query engine capable of parsing
a pod’s SGV description and acting accordingly. The source code of the implementa-
tion and benchmark can be found online15. The query engine acts as a wrapper around

15https://github.com/jitsedesmet/sgv-update-engine/releases/tag/v0.0.2

the modular Comunica query engine [29]. We chose to implement a wrapper around
Comunica for convenience because it allows us to quickly get results without the need
of understanding, or changing Comunicas internal code.

For this proof of concept implementation, we only support essential parts of SGV.
We therefore only provide an implementation of the following concepts:
1. Canonical Collection
2. Group Strategy: only URI templates.
3. Resource Description: only SHACL.
4. Store Condition: “always stored”, “prefer other”, “only stored when not redundant”,

and “never stored”.
5. Update Condition: “prefer static”, “move to best matched”, and “disallow”.
To parse and validate our ShEx descriptions, we use the rdf-validate-shacl library16.
This library is known to be quite inefficient and could be replaced by the faster SHACL

16https://www.npmjs.com/package/rdf-validate-shacl

engine library17. Unfortunately, that library does not have type descriptions available,
making adoptions less desirable.

17https://www.npmjs.com/package/shacl-engine

6.2 Theoretical Evaluation
In our theoretical evaluation, we analyse the number of HTTP requests. In Chapter 1.4
we hypothesize that the required number of HTTP queries of an SGV aware client
would at most be double that of a normal one.

40.

https://github.com/jitsedesmet/sgv-update-engine/releases/tag/v0.0.2
https://www.npmjs.com/package/rdf-validate-shacl
https://www.npmjs.com/package/shacl-engine
https://www.npmjs.com/package/shacl-engine

6 Evaluation

6.2.1 Insert Operation
In this section, we analyse the cost of a simple insert operation as seen in Listing 28
in the empirical evaluation. In Chapter 5.1 we analysed the steps required for this op-
eration.
Fetch the Description
The query engine should request the SGV description. This accounts for one HTTP
request, assuming the API (Application Programming Interface) publishes it as a single
HTTP resource. It should be noted that the SGV description can easily be cached since
it will not change a lot.

Do note however that using an outdated version can be detrimental. Unfortunately,
since LDP exposes a pod through multiple different HTTP resources, there is no way of
checking whether your SGV description has not grown outdated when you start updat-
ing data. For example, you could compute the change, then fetch the SGV again using
an if-moified-since header18 and recompute in case it did change. However, in between

18https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/If-Modified-Since

confirming you have the latest value and writing the data, the SGV could have been
changed, causing you to write in an outdated way, nevertheless. Because LDP exposes
multiple HTTP resources, using the If-Unmodified-Since19 is not possible.

19https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/If-Unmodified-Since

Loop the Resource Descriptions
The next thing a query engine must do is checking what canonical collections want to
store the resource. Worst-case scenario, all collections could store the resource, but they
only discover this at the last resource description of each collection. In such a case, all
resource descriptions pointed to by canonical collections need to be checked.

The cost of a single validation can be linear in the number of properties the de-
scription has. Since the focus of the resource is on a single named node, only that named
node should be considered as a focus node in the validation.

The computational load could be reduced when resource descriptions have overlap-
ping descriptions. A shape could in that case be defined as a conjunction using sh:and.
Take the example of images and personal images. A personal image could be described
using logical constraint components as described in Section 5.3.7.

41.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/If-Modified-Since
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/If-Unmodified-Since

6.2 Theoretical Evaluation

As an example, for the case described in Listing 22, a query engine could cache the
evaluation result of ex:Picture. Optimizations in the descriptions like this could likely be
automated.

ex:PictureShape
 a sh:NodeShape .

ex:WhatMakesPicturePersonalShape
 a sh:NodeShape .

ex:PersonalPictureShape
 a sh:NodeShape ;
 sh:and (
 ex:pictureShape
 ex:WhatMakesPicturePersonalShape
) .

Listing 22: SHACL description using logical constrained components

Filter Collections on Store Condition
The complexity of filtering the list of eligible collections could be significant. We do,
however, expect that this list will be small. In case the state required condition is used, a
whole SPARQL query needs to be executed to check the state. We will thus disregard
that case here. The worst-case performance is listed below:
• Always Stored: Constant
• Prefer Other: linear search in a list of eligible collections.
• Prefer Most Specific: linear scan trough eligible collections and distance function

dependent cost for each collection. The distance could be cached.
• Only stored when not redundant: linear scan through collections in case no collection

is clear-cut
• Never: constant
Compute Named Node
For each collection that will store the resource, we now have to compute the named
node. In the case of URI templates with regexes, this cost negligible.
Create Resources
The Solid Specification requires updates to happen using N3Patch, this means that
each created resource requires its own HTTP request.

42.

6 Evaluation

Interestingly, some implementations of a solid server, like the Community Solid
Server20 also accept SPARQL update queries.

20https://communitysolidserver.github.io/CommunitySolidServer/7.x/usage/example-requests/#
patch-modifying-resources

Conclusion Resource Creation
We now know that the resource creation takes 2 HTTP requests: reading SGV and
creating the resource. This is compliant with our hypothesis.

6.2.2 Update Resource, No Move Required
This section theoretically analyses the cost of updating a resource when the resource
needs not be moved. A general update flow can be found in Chapter 5.2. An example
update query is Listing 30 in the empirical evaluation.
Fetch the Description and the Resource
Like with creating a resource, we need to fetch the SGV, costing us one HTTP request.
Additionally, we need to fetch the current state of the resource, costing us one additional
HTTP request. Luckily, these requests can be done in parallel, minimizing delay.
Construct the result
We then construct the result using the default query engine. The cost of this construc-
tion depends on the query engine and is not covered in the work. For the Comunica
query engine, the cost of local construction is low when the query engine can be reused.
Check the Update Condition
We know the canonical collection this RDF resource is stored in because the prefix of
the collection and the resource named node matches. We then have to check the update
condition the resource matches and check if, and how, we can update. In most cases,
this is a fairly simple process.

In the case of Keep Distance, an update that stretches the shape description too
might cause many updates. It’s important to note though that the Amortized Compu-
tational Complexity [40] would still make this a constant operation.
Commit Changes
In case no move is required, a single N3Patch request should suffice to update the
resource. However, because the primary focus of Comunica is in querying, their update
implementation seems to require two, non-parallel HTTP requests²¹.

²¹As seen in the discussion on https://github.com/comunica/comunica/pull/1326. Will be fixed in
the next major release: https://github.com/comunica/comunica/pull/1331

43.

https://communitysolidserver.github.io/CommunitySolidServer/7.x/usage/example-requests/#patch-modifying-resources
https://communitysolidserver.github.io/CommunitySolidServer/7.x/usage/example-requests/#patch-modifying-resources

6.2 Theoretical Evaluation

Conclusion Resource Update, No Move
We can conclude that the cost of an RDF resource update is three in the case of an
update that only deletes or adds triples, and four in the case of an update that both
deletes and updates. It should, however, be possible to do it using only three HTTP
requests. Which is valid with our hypothesis, since a non-SGV query engine would re-
quire either two or three requests. One to get the original resource, and one or two to
update.

6.2.3 Update Resource, Move Required
In the previous section, we assume the update condition concludes no move is required.
This section describes the cost when a move is required. In this case, we delete the
original RDF resource and follow the steps of Section 6.2.1, disregarding the SGV fetch
step.

Assuming we use N3Patch, and the RDF resource is moved to by a different HTTP
resource, the required number of requests will be four. One for getting the SGV descrip-
tion (cacheable), one for getting the deleting the resource, one for deleting the original
resource, and one for creating the updated resource. When a resource would be moved
without SGV, a client would also require three requests, one to get the resource, one
to delete the old, and one to insert the new resource. As a result, our hypothesis is
still valid.

6.2.4 Conclusion theoretical evaluation
We can thus conclude that our hypothesis about the number of HTTP requests is valid.
An SGV client requires at most double the number of HTTP requests a non SGV client
requires.

6.3 Empirical Evaluation
After a theoretical evaluation, we also evaluate the implementation in an empirical way.
We perform time benchmarks for different queries, all following our use case. The goal
of this evaluation is to convince the reader the cost of SGV on query execution is man-
ageable. The hypothesis (Chapter 1.4) is that the execution time for the same query is
at most four times as high when using the SGV enabled query engine.

44.

6 Evaluation

The empirical evaluation is performed using SolidBench²², which uses the same data
as our use case, namely, the Social Network Benchmark [11]. After the generation of

²²https://github.com/SolidBench/SolidBench.js

our test data, we use SolidBench to host the data locally. Under the hood, SolidBench
will use the Community Solid Server [41] to expose the resources.

In our evaluation, we will focus on the RDF resource of a post. Listing 23 provides
the ShEx shape of a post. Different pods will have different ways of storing these posts,
called fragmentation strategies. We will use four fragmentation strategies in our evalu-
ation:
1. Posts are grouped in files based on the creation date. Within that file, they have a

fragment based on the ID. (See Listing 24)
2. Posts are grouped in files based on the location. Within that file, they have a frag-

ment based on the ID. (See Listing 25)
3. All posts are stored in one file. Within that file, they have a fragment based on the

ID. (See Listing 26)
4. Each posed is stored in their own file based on the ID. (See Listing 27)
In hindsight, the scope of SolidBench was too big as it creates 1528 pods, but we will
only query 4 of them. Each SGV file contains approximately 33 triples. For the writing
data use case, the accessed data files are either empty, or in the case of the “one file”
fragmentation strategy contain 2947 triples. When updating, we first prepare the file
with the insertion of a single post, adding another 9 triples to each data file.

prefix ex: <http://example.org/>
prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
prefix xsd: <http://www.w3.org/2001/XMLSchema#>
prefix ldbc: <http://localhost:3000/www.ldbc.eu/ldbc_socialnet/1.0/vocabulary/>
ex:PostShape {
 ldbc:browserUsed xsd:string ;
 ldbc:creationDate xsd:dateTime ;
 ldbc:hasCreator @ex:PersonShape ;
 ldbc:id xsd:long ;
 ldbc:isLocatedIn @dbo:PlaceShape ;
 ldbc:locationIP xsd:string ;
 ldbc:content xsd:string ? ;
 ldbc:length xsd:int ? ;
 rdfs:seeAlso @sh:IRI * ;
 ldbc:language xsd:string ? ;
}

Listing 23: ShEx description of a post

45.

https://github.com/SolidBench/SolidBench.js

6.3 Empirical Evaluation

<posts/> a sgv:canonical-collection ;
 sgv:group-strategy
 [
 a sgv:group-strategty-uri-template ;
 sgv:uri-template
 '{ldbc:creationDate:10}#{ldbc:id}' ;
] .

Listing 24: Group strategy - by creation date

<posts/> a sgv:canonical-collection ;
 sgv:group-strategy [
 a sgv:group-strategty-uri-template ;
 sgv:uri-template
 '{ldbc:isLocatedIn}#{ldbc:id}' ;
 sgv:regex-match '([^/]+)#([^#]+)$' ;
 sgv:regex-replace '$1/$2' ;
] .

Listing 25: Group strategy - by locations

<posts> a sgv:canonical-collection ;
 sgv:group-strategy
 [
 a sgv:group-strategty-uri-template ;
 sgv:uri-template
 '#{ldbc:id}' ;
] .

Listing 26: Group strategy - one file

<posts/> a sgv:canonical-collection ;
 sgv:group-strategy
 [
 a sgv:group-strategty-uri-template ;
 sgv:uri-template '{ldbc:id}' ;
] .

Listing 27: Group strategy - own file

6.3.1 Test Hardware Specification
For completeness’s sake, we briefly describe the system used in the benchmarking. The
benchmarks are performed on a Dynabook Inc. Satallite Pro A50EC with 16 GiB memory, an
Intel® Core™ i5-8250U x 8 processor and an Intel® Graphic UHD Graphics 620 (KBL GT2). The installed
operating system is a Fedora Workstation 39 (64-bit), and firmware version 2.70. It
should further be noted that both the query engine and SolidBench run on this machine.
As a result, our benchmark does not truly capture the large delays an HTTP request
causes over a real network.

6.3.2 Choke Point Queries
We evaluate the vocabulary using multiple queries, each query testing a specific choke
point. The choke points we will be testing are:
1. Create new resource: Listing 28
2. Update resource, no move: Listing 30, Listing 32, Listing 35, Listing 37
3. Update resource, move: Listing 33
4. Illegal update resource: Listing 31, Listing 36
5. Delete resource: Listing 29, Listing 34

46.

6 Evaluation

The queries should cover all different queries from the update SPARQL specification
(see Section 2.2.4). Because we want to cover all types of queries, some choke points
are represented by more than one query.

prefix ns1: <http://localhost:3000/www.ldbc.eu/ldbc_
socialnet/1.0/vocabulary/>
prefix xsd: <http://www.w3.org/2001/XMLSchema#>
prefix card: <http://localhost:3000/pods/00000000000000000
096/profile/card#>
prefix tag: <http://localhost:3000/www.ldbc.eu/ldbc_
socialnet/1.0/tag/>
PREFIX resource: <http://localhost:3000/dbpedia.org/
resource/>

INSERT DATA {
 <> a ns1:Post ;
 ns1:browserUsed "Chrome" ;
 ns1:content
 "I want to eat an apple." ;
 ns1:creationDate
"2024-05-08T23:23:56.83Z"^^xsd:dateTime ;
 ns1:id "416608218494388"^^xsd:long ;
 ns1:hasCreator card:me ;
 ns1:hasTag tag:Alanis_Morissette, tag:Austria ;
 ns1:isLocatedIn resource:China ;
 ns1:locationIP "1.83.28.23" .
}

Listing 28: insert data - complete post

prefix ns1: <http://localhost:3000/www.ldbc.eu/ldbc_
socialnet/1.0/vocabulary/>
prefix xsd: <http://www.w3.org/2001/XMLSchema#>
prefix card: <http://localhost:3000/pods/00000000000000000
096/profile/card#>
prefix tag: <http://localhost:3000/www.ldbc.eu/ldbc_
socialnet/1.0/tag/>
prefix resource: <http://localhost:3000/dbpedia.org/
resource/>
prefix res: <http://localhost:3000/pods/000000000000000000
96/posts/2024-05-08#>

DELETE DATA {
 res:416608218494388
 a ns1:Post ;
 ns1:browserUsed "Chrome" ;
 ns1:content
 "I want to eat an apple." ;
 ns1:creationDate
"2024-05-08T23:23:56.83Z"^^xsd:dateTime ;
 ns1:id "416608218494388"^^xsd:long ;
 ns1:hasCreator card:me ;
 ns1:hasTag tag:Alanis_Morissette, tag:Austria ;
 ns1:isLocatedIn resource:China ;
 ns1:locationIP "1.83.28.23" .
}

Listing 29: delete data - complete post

prefix tag: <http://localhost:3000/www.ldbc.eu/ldbc_
socialnet/1.0/tag/>
prefix res: <http://localhost:3000/pods/000000000000000000
96/posts/2024-05-08#>

INSERT {
 res:416608218494388 ?p tag:Cheese
} where {
 res:416608218494388 ?p tag:Austria
}

Listing 30: insert where - insert tag where tag

prefix ns1: <http://localhost:3000/www.ldbc.eu/ldbc_
socialnet/1.0/vocabulary/>
prefix xsd: <http://www.w3.org/2001/XMLSchema#>
prefix res: <http://localhost:3000/pods/000000000000000000
96/posts/2024-05-08#>

INSERT DATA {
 res:416608218494388 ns1:id
"416608218494389"^^xsd:long ; .
}

Listing 31: insert data - an id (illegal)

47.

6.3 Empirical Evaluation

prefix ns1: <http://localhost:3000/www.ldbc.eu/ldbc_
socialnet/1.0/vocabulary/>
prefix tag: <http://localhost:3000/www.ldbc.eu/ldbc_
socialnet/1.0/tag/>
prefix res: <http://localhost:3000/pods/000000000000000000
96/posts/2024-05-08#>

INSERT DATA {
 res:416608218494388 ns1:hasTag tag:Mountain .
}

Listing 32: insert data - additional tag

prefix ns1: <http://localhost:3000/www.ldbc.eu/ldbc_
socialnet/1.0/vocabulary/>
prefix xsd: <http://www.w3.org/2001/XMLSchema#>
prefix res: <http://localhost:3000/pods/000000000000000000
96/posts/2024-05-08#>

DELETE {
 ?id ns1:id "416608218494388"^^xsd:long .
} INSERT {
 ?id ns1:id "416608218494389"^^xsd:long .
} where {
 BIND(res:416608218494388 as ?id)
}

Listing 33: delete insert - replace id

prefix res: <http://localhost:3000/pods/000000000000000000
96/posts/2024-05-08#>

DELETE WHERE {
 res:416608218494388 ?p ?o
}

Listing 34: delete where - complete post

prefix ns1: <http://localhost:3000/www.ldbc.eu/ldbc_
socialnet/1.0/vocabulary/>
prefix res: <http://localhost:3000/pods/000000000000000000
96/posts/2024-05-08#>

DELETE {
 res:416608218494388 ns1:hasTag ?x
} where {
 res:416608218494388 ns1:hasTag ?x
}

Listing 35: delete - tags

prefix ns1: <http://localhost:3000/www.ldbc.eu/ldbc_
socialnet/1.0/vocabulary/>
prefix xsd: <http://www.w3.org/2001/XMLSchema#>
prefix res: <http://localhost:3000/pods/000000000000000000
96/posts/2024-05-08#>

DELETE DATA {
 res:416608218494388 ns1:id
"416608218494388"^^xsd:long ; .
}

Listing 36: delete data - id (illegal)

prefix ns1: <http://localhost:3000/www.ldbc.eu/ldbc_
socialnet/1.0/vocabulary/>
prefix tag: <http://localhost:3000/www.ldbc.eu/ldbc_
socialnet/1.0/tag/>
prefix res: <http://localhost:3000/pods/000000000000000000
96/posts/2024-05-08#>

DELETE DATA {
 res:416608218494388 ns1:hasTag tag:Mountain .
}

Listing 37: delete data - a tag

6.3.3 Choke Point: Create New Resource
The creation of a new resource is a type of query where we know we should find the
collections the resource belongs to and store it there. The non-SGV variant of query
Listing 28 simply replaces the base URI with the named node we decided for the re-
source. The execution time results are given in Table 3. As expected, the SGV engine is
always slower. It is, however, still within the expected range. The ratios are in respective
order: 0.629 ; 0.857 ; 0.769 ; and 0.657 . Interestingly, we see that the execution time
varies more between fragmentation strategies than it does between using SGV or not.

48.

6 Evaluation

Task ops/sec Average Time (ms) Margin
insert data complete by creation date: SGV 22 44582.068 ±1.73%
insert data complete by creation date: RAW 35 27899.513 ±2.07%

insert data complete all in one file: SGV 6 149415.739 ±2.98%
insert data complete all in one file: RAW 7 134361.192 ±8.66%

insert data complete own file: SGV 10 91851.395 ±2.56%
insert data complete own file: RAW 13 76672.217 ±3.07%

insert data complete by creation location:
SGV

23 43005.366 ±2.20%

insert data complete by creation location:
RAW

35 28003.949 ±2.53%

Table 3: Average execution time of insert data complete query (Listing 28) over 100 runs
6.3.4 Choke Point: Update Resource, No Move
A different kind of choke point is simply a query that results in the same behaviour
under SGV as it does without SGV. We evaluate a set of queries that simply modify
the resource without moving it in any way.

Table 4, Table 5, Table 6, and Table 7 show the execution time of respectively
query Listing 30, Listing 32, Listing 35, and Listing 37. Each of those execution times is
lower than those in the previous section. The ratios of SGV-operations over non-SGV-
operations per second are:
• For Table 4: 0.467 ; 0.5 ; 0.467 ; and 0.467
• For Table 5: 0.333 ; 0.375 ; 0.333 ; and 0.333
• For Table 6: 0.467 ; 0.5 ; 0.467 ; and 0.467
• For Table 7: 0.333 ; 0.375 ; 0.333 ; and 0.333
Although these ratios are still better than the hypothesized 0.25, they are significantly
worse than the previous section. That’s to be expected because the SGV enabled a
query engine has to perform more steps now. Even tough it is worse across the board,
we still see that the fragmentation strategy plays a roll.

49.

6.3 Empirical Evaluation

Task ops/sec Average Time (ms) Margin
insert where tag by creation date: SGV 7 130209.519 ±0.33%
insert where tag by creation date: RAW 15 64915.564 ±1.29%

insert where tag all in one file: SGV 4 226277.836 ±2.64%
insert where tag all in one file: RAW 8 122255.749 ±2.96%

insert where tag own file: SGV 7 129497.887 ±0.75%
insert where tag own file: RAW 15 65628.874 ±1.45%

insert where tag by creation location: SGV 7 130342.417 ±0.36%
insert where tag by creation location: RAW 15 64542.496 ±1.33%

Table 4: Average execution time of insert where tag query (Listing 30) over 100 runs

Task ops/sec Average Time (ms) Margin
insert data tag by creation date: SGV 5 178149.073 ±0.70%
insert data tag by creation date: RAW 15 63309.807 ±0.45%

insert data tag all in one file: SGV 3 289314.253 ±0.77%
insert data tag all in one file: RAW 8 123444.536 ±3.48%

insert data tag own file: SGV 5 178175.593 ±0.28%
insert data tag own file: RAW 15 63045.682 ±0.41%

insert data tag by creation location: SGV 5 178955.959 ±0.54%
insert data tag by creation location: RAW 15 63363.918 ±0.51%

Table 5: Average execution time of insert data tag query (Listing 32) over 100 runs

Task ops/sec Average Time (ms) Margin
delete where tags by creation date: SGV 7 128534.614 ±0.59%
delete where tags by creation date: RAW 15 64838.515 ±1.26%

delete where tags all in one file: SGV 4 217007.521 ±1.88%
delete where tags all in one file: RAW 8 115368.001 ±2.43%

delete where tags own file: SGV 7 130018.987 ±0.49%
delete where tags own file: RAW 15 64744.311 ±1.37%

delete where tags by creation location: SGV 7 130569.365 ±0.94%
delete where tags by creation location: RAW 15 64453.229 ±1.25%

Table 6: Average execution time of delete where tags query (Listing 35) over 100 runs

6.3.5 Choke Point: Update resource: Move

50.

6 Evaluation

Task ops/sec Average Time (ms) Margin
delete data tag by creation date: SGV 5 174155.254 ±0.71%
delete data tag by creation date: RAW 15 63248.866 ±0.48%

delete data tag all in one file: SGV 3 292456.437 ±1.42%
delete data tag all in one file: RAW 8 120948.758 ±3.02%

delete data tag own file: SGV 5 176555.335 ±0.61%
delete data tag own file: RAW 15 63792.069 ±0.83%

delete data tag by creation location: SGV 5 175975.652 ±0.31%
delete data tag by creation location: RAW 15 63362.320 ±0.43%

Table 7: Average execution time of delete data tag query (Listing 37) over 100 runs
This choke point is a vital one to defend SGV as it is impossible to write a SPARQL
query that would show the same behaviour as the SGV move. SPARQL is unable to
select the CBD. Since a move moves the whole CBD to a potentially new HTTP docu-
ment, and SPARQL is unable to select the CBD, we required a different approach. We
compare the SGV query engine to the execution of two queries in parallel, one delete
data query and one insert data query.

Table 8 shows the execution times of query Listing 33. The ratios of operations are:0.636 ; 0.5 ; 0.417 ; and 0.583 We can thus conclude that our hypothesis is still valid.
Again, we highlight the difference between fragmentation strategies. Clearly, the delay
experienced from loading the large file in the case all posts are stored in the same file
is significant.

Task ops/sec Average Time (ms) Margin
delete insert id by creation date: SGV 7 141940.530 ±1.28%
delete insert id by creation date: RAW 11 87113.119 ±0.75%

delete insert id all in one file: SGV 2 343690.220 ±1.70%
delete insert id all in one file: RAW 4 208930.211 ±2.04%

delete insert id own file: SGV 5 177991.908 ±0.58%
delete insert id own file: RAW 12 80729.940 ±1.06%

delete insert id by creation location: SGV 7 133052.120 ±0.60%
delete insert id by creation location: RAW 12 81066.196 ±1.15%

Table 8: Average execution time of delete insert ID query (Listing 33) over 100 runs
51.

6.3 Empirical Evaluation

6.3.6 Choke Point: Illegal Update Resource
In this choke point, we evaluate queries that are rejected by an SGV engine. The be-
haviour is again different from a non-SGV-aware engine. The resulting resources of a
normal engine are considered wrong. The execution time ratios are good in this case
because the SGV engine need not apply the changes. It can therefore terminate execu-
tion early. We have two queries, namely Listing 31 and Listing 36, their execution times
can be found in respectively Table 9 and Table 10. The ratios are:
• for Table 9: 0.8 ; 0.625 ; 0.8 ; and 0.8
• for Table 10: 0.8 ; 0.625 ; 0.8 ; and 0.8
These results confirm our hypotheses.

Task ops/sec Average Time (ms) Margin
insert data id by creation date: SGV 12 80325.290 ±0.66%
insert data id by creation date: RAW 15 63787.431 ±0.58%

insert data id all in one file: SGV 5 184135.528 ±0.71%
insert data id all in one file: RAW 8 122780.884 ±2.99%

insert data id own file: SGV 12 79745.654 ±0.62%
insert data id own file: RAW 15 63785.574 ±0.58%

insert data id by creation location: SGV 12 80393.959 ±0.86%
insert data id by creation location: RAW 15 63705.068 ±0.66%

Table 9: Average execution time of insert data ID query (Listing 31) over 100 runs

Task ops/sec Average Time (ms) Margin
Delete data id by creation date: SGV 12 80141.498 ±0.80%
Delete data id by creation date: RAW 15 63500.094 ±0.43%

Delete data id all in one file: SGV 5 185053.673 ±0.73%
Delete data id all in one file: RAW 8 121587.804 ±2.94%

Delete data id own file: SGV 12 79697.409 ±0.60%
Delete data id own file: RAW 15 63715.705 ±0.92%

Delete data id by creation location: SGV 12 79515.830 ±0.51%
Delete data id by creation location: RAW 15 63687.341 ±0.77%

Table 10: Average execution time of delete data ID query (Listing 36) over 100 runs
52.

6 Evaluation

6.3.7 Choke Point: Delete Resource
Queries under this choke point have the same behaviour for both an SGV-enabled en-
gine and an engine that is not SGV-enabled. Table 11 and Table 12 show the execution
time for respectively query Listing 29 and Listing 34. The ratio of operations between
SGV and raw are:
• Table 11: 0.357 ; 0.375 ; 0.357 ; and 0.333
• Table 12: 0.467 ; 0.5 ; 0.5 ; and 0.467
These ratios confirm our hypothesis.

Task ops/sec Average Time (ms) Margin
delete data complete by creation date: SGV 5 177951.642 ±0.53%
delete data complete by creation date: RAW 14 67166.339 ±0.55%

delete data complete all in one file: SGV 3 298814.885 ±0.94%
delete data complete all in one file: RAW 8 119370.476 ±2.83%

delete data complete own file: SGV 5 176949.144 ±0.33%
delete data complete own file: RAW 14 66844.005 ±0.59%

delete data complete by creation location:
SGV

5 178498.626 ±0.30%

delete data complete by creation location:
RAW

15 65565.496 ±0.76%

Table 11: Average execution time of delete data complete query (Listing 29) over 100 runs

6.3.8 Conclusion
In conclusion, our hypothesis holds when we compare the execution time and HTTP
request count of an SGV query engine to a non-SGV engine that executes the same
operations that the SGV engine would take. Unfortunately, when a move of the CBD of
a resource is required, a developer cannot use a SPARQL query engine, since SPARQL
is not expressive enough to describe the CBD. In case such behaviour is desired, a
manual interaction with the interface is required.

A different approach might be to use the “DESCRIBE” query of SPARQL that is
sometimes implemented as the CBD of a resource. However, since this choice is imple-

53.

6.3 Empirical Evaluation

Task ops/sec Average Time (ms) Margin
delete where complete by creation date: SGV 7 132988.158 ±0.46%
delete where complete by creation date: RAW 15 65584.642 ±0.40%

delete where complete all in one file: SGV 4 213726.655 ±1.36%
delete where complete all in one file: RAW 8 121148.118 ±2.93%

delete where complete own file: SGV 7 130769.232 ±0.43%
delete where complete own file: RAW 14 69931.699 ±3.13%

delete where complete by creation location:
SGV

7 130786.473 ±0.62%

delete where complete by creation location:
RAW

15 66160.665 ±1.28%

Table 12: Average execution time of delete where complete query (Listing 34) over 100 runs
mentation-specific, and is not required by the SPARQL spec, using describe to get the
CBD is not advised.

54.

7 Future Work
SGV proves it is possible to create automated clients that can decide where to store
resources. In the state we present it here, it is not production ready, but it opens the
gate to interesting research.

7.1 Source Discovery
In this work, we do not discuss source discovery when updating a resource. In our im-
plementation, we take the classical approach where you need to provide a resource that
should be updated. This means we actually still have a data access path dependency!
The only access path dependency we solved is the one where a resource is created.
When preforming an update, we expect the user to update only one specifically speci-
fied resource at a time. This way, they will know the Named Node of the resource, and
therefore they know where it is stored.

The problem is that a user does not always know the resource they want to update.
Imagine changing your name, you would like to update all HTTP resources that contain
your name. How do you know what resources contain your name? In the context of
read queries, one might want to preform a link traversal query over their pod. A query
engine should be able to do something similar for the case of update queries. When
confronted with a query to change your name, it should find all documents containing
your name and alter them. Finding these resources can happen using any source dis-
covery technique. When constructing the result, the query engine should keep a source
attribution list²³, and update these sources. The construction of a source attribution

²³Interestingly, this is currently being implemented in Comunica:
https://github.com/comunica/comunica/pull/1325

list is related to the domain of data provenance [42], which is well established research
within the semantic web community [43].

7.2 Inter pod updates
SGV is restricted to updating a single pod. Additional research should go into updates
that alter multiple pods. Handling multiple pods is complex as many decisions are valid.
In the example of two pods, there is already a multitude of use cases, each with different
considerations.

55.

7.2 Inter pod updates

1. As a pod owner, I want to transfer pictures I have to someone else, so they now own
that picture. Note that I am not guaranteed to have write permissions to the other
Solid pod.

2. As a pod owner, I want to transfer a token to a pod I do, or do not, have write access
to. The token should always exist exactly once, meaning there is always one person
holding the token, and everyone can see who has it.

3. As a pod owner, I want to insert an additional property to an existing resource
in someone else’s pod. For example, I transferred a picture and forgot to add a de-
scription.

4. As a pod owner, I want to delete a property of an existing resource in someone
else’s pod.

5. As a pod owner, I want to remove a resource in someone else’s pod, so I don’t see
it anymore. Essentially, I want to change my view of the resource. This could be
achieved by using the Subweb Specification [44] and adding a rule that makes me
ignore the “virtually” deleted triple.

6. As a pod owner, I want to remove a resource in someone else’s pod, so no one can see
it. I might want to send a suggestion in a notification collection of the targeted pod.

Besides access control problems and how to circumvent them, we also face the problem
of backlinks. We already suggested the use of an sgv:moved-to predicate to prevent links
from breaking, but it might be better to discover backlinks and alter them when a
resource changes.

7.3 Other Interfaces
This work focusses on LDP interfaces. For such an interface, data is linked to newly
created tuples through ldp:contains predicates. When we don’t use LDP, or use a different
kind of interface, the question we try to answer might shift from “Where do I store
this resource?” to “What other resources are linked to this new one, and through what
predicates”?

There is merit to investigating different interfacing technologies because LDP is far
from perfect. By nature, LDP restricts data consumers [34]. Even more so, much of the
complexity of SGV is required because of LDPs nature. Nevertheless, it is unlikely that

56.

7 Future Work

LDP completely disappears because the low server complexity makes it very attractive
for data providers.

Through SGV, it would also be possible to create multiple interfaces on the same
data. You could for example expose the raw data graph of a pod through a SPARQL
endpoint. The endpoint could then, for example, only be used by highly authorized
users. Another interface could be LDP powered and be constructed based on an SGV
description of derived collections.

7.4 Guided queries
Within the research around querying the semantic web, there exists link traversal. Un-
like federated querying where you define the sources to query over beforehand, link
traversal will discover new sources while executing queries. This comes with various
difficulties, like safety issues [38], completeness modelled by completeness guarantees,
and execution time. There has been the assumption that we cannot reduce the execution
time of a link traversal powered query over the semantic web because of its enormous
size. The consensus has thus been that we should just make sure most results are re-
ceived fast through link prioritization [45], that way we can set a timeout and assume
no results would be found after a time. Recent work that uses completeness guarantees
and the structured nature of some interfaces has shown that it is possible to speed up
queries and be complete to a certain extent [21]. That early work uses type indexes to
get structural descriptions, but the complexity could be increased to use shape trees
or even SGV. In this extension, SGV can prove to be more valuable than shape trees
because it expresses the underlying data flow better. For example, a collection that is
derived from another should not be consulted if the canonical containers have already
been consulted.

7.5 View Creation and Discovery
The issues related to the document-based nature of the current Solid specification that
have been described [34] can be solved by creating derived resources [35]. The work
by J. Van Herwegen and R. Verborgh shows that derived resources are a way forward.
Given the similarities between their work and SGVs derived resources, we are confident

57.

7.5 View Creation and Discovery

that an implementation is feasible. In their work, they solve the issue of access control
granularity.

In our empirical evaluation, we discover that the execution time of our queries
heavily relies on our pod structures (Section 6.3.3). We therefore expect that a smart
server that knows what optimizations are possible by query engines could have sig-
nificant execution time benefits. Such a server could create resources dynamically to
facilitate query executions. The resources to create could be based on the usage metrics
the server has.

7.6 Smart Access Control
Both WAC and ACP don’t allow users to create access control rules based on the RDF
content itself. Since a long time, efforts exist to change this, one such effort is the
Universal Access Control24 of Thomas Bergwinkl. A motivation for disallowing these

24https://www.bergnet.org/people/bergi/files/documents/2014-02-14/index.html#/

kinds of policies could be the rise in user complexity. However, through the resource
description formats like Shape Trees and SGV, one could argue that we express what
data is in a resource. Therefore, we could extract an access control policy in function
of the data based on the policy on the document.

Access control extraction could help create uniform access rules across multiple
interfaces of the same pod in a way that feels familiar for users.

7.7 SGV Integration with Existing Structure Ontologies
The vocabulary described in this work has limited interoperability with existing vo-
cabularies. Since SGV exists in the same domain as shape trees [23], it would make
sense to adapt/ extend the vocabulary in such a way that it could be easily plugged
into an existing shape tree environment. This alternative structure would likely be less
expressive.

In the same way, integration with TREE [13] would increase the vocabulary’s in-
teroperability. It should, however, be noted that Tree could also be considered “a kind
of structured data you can store using LDP and SGV.”

58.

https://www.bergnet.org/people/bergi/files/documents/2014-02-14/index.html#/

7 Future Work

7.8 General Update Behaviour
The question we asked ourselves when starting this work was: “how can we make up-
dating solid pods easier?” We ended up creating a base layer that allows query engines
to decide how to store resources. That was not the only possible way of making updates
easier. In this section, we list a few more possible improvements related to data updates.
May it inspire anyone to work on these challenging topics.

7.8.1 CRDTs: The Eventual Consistency Approach
Through Solid, many applications are working on the same data, and each application
likely has their own cache in place. As a result, applications working on the same data
all have their own local copy of the data, essentially creating a distributed system.
It is important that one application does not just undo the work by another applica-
tion. A CRDT (Conflict-free Replicated Data Type) is a data type with the properties
that essentially chooses for eventual consistency on the CAP scale [3]. A basic CRDT
implementation for Solid25 already exists, recently created by Noel De Martin, hosting

25https://slidr.io/NoelDeMartin/solid-crdts-in-practice#36

the vocabulary online26. That implementation is a nice starting point, but it does not
yet contain logical clocks.

26https://vocab.noeldemartin.com/crdt/

7.8.2 ACID Transactions
Massive adaptation is the dream of any technology, but to achieve that, you need to be
at least as good as the competition. The largest competitor for data storage is the rela-
tional database offering the ACID (atomicity, consistency, isolation, durability) prop-
erties. Not only do developers expect these properties, many applications are unable to
operate without these consistency guarantees. We therefore advocate for research into
stronger consistency guarantees in Solid.

Such a claim is not always well received, because of the CAP theorem that states
that you can only have two out of {Consistency, Availability, Partition tolerance} [3].
However, the choice is not binary, as later clarified by the writers of the CAP theo-
rem [46]. Not only can the research decide in “how consistent” we want to be, we have
a varying partition tolerance variable too! Most distributed database systems replicate
data across machines so that when one machine goes down, all data is still accessible,

59.

https://slidr.io/NoelDeMartin/solid-crdts-in-practice#36
https://slidr.io/NoelDeMartin/solid-crdts-in-practice#36
https://slidr.io/NoelDeMartin/solid-crdts-in-practice#36
https://slidr.io/NoelDeMartin/solid-crdts-in-practice#36
https://slidr.io/NoelDeMartin/solid-crdts-in-practice#36
https://slidr.io/NoelDeMartin/solid-crdts-in-practice#36
https://vocab.noeldemartin.com/crdt/

7.8 General Update Behaviour

be it through other nodes in the system. Solid does not have such a replication system
in place. When a single pod disconnects from the network, the data on that pod cannot
be accessed until the pod connects to the network again. We believe that this opens
some space for research on stronger consistency requirements.

The decision of what point in the CAP space we work with need not be done at
pod level, but could be done on HTTP resource level. For example, one HTTP resource
might support CRDTs essentially choosing for availability over consistency. Another re-
source might introduce some locking mechanism, choosing consistency over availability.

60.

8 Conclusion
In this work, we presented a vocabulary that allows smart clients to autonomously
discover the location a created or updated resource should be stored. The vocabulary
also introduces checks on whether a resource can be created or removed. Additionally,
we proved that our vocabulary is indeed expressive enough by implementing a smart
client that consumes it.

We hypothesized that such a smart client would be a maximum of four times slower
and would require a maximum of double the amount of HTTP requests. Through the-
oretical evaluation, we discovered that the amount of HTTP requests is within those
bound. Using empirical evaluation, we also validated that the execution time overhead
is within the accepted range. Moreover, we saw that some of SGVs behaviour cannot
be modelled using a SPARQL query.

In essence, SGV tries to provide structure to a widely unstructured document store
that is LDP. It does this by defining a server-side description of the structure that
should be enforced by clients. In reality, clients can still interact with the Solid pod
however they want, since the server is not aware that a structure should be followed.
This lack of server-side verification is perhaps the biggest shortcoming of this work.
That being said, it is entirely possible to extend an existing Solid server with a SGV
verification system. The downside at that being that both the client and server need
to calculate the proposed location of a resource. Unfortunately, this is a shortcoming
of the LDP interface itself, as it chooses for a low-complexity server. This choice often
comes at the cost of a complex client side. What’s more, since one server interface is
used by many clients, it becomes almost impossible to guarantee a system that respects
the structure of a permissive interface.

Throughout this work, we frequently talk about “the RDF resource”, defining it
as the CBD of some named node. This definition is actually rather arbitrary. Another
way of defining a resource is by using the shape descriptions. Though the use of shape
descriptions, create an RDF resource containing multiple named nodes as subjects.
Listing 38 shows a description with multiple named nodes. SGV will then try to define
a base for this query and place the resource there. When editing the resource, we need

61.

to be aware that both named nodes are referable by others. Thus, when we conclude a
move is required, we should decide on what named nodes should be moved.

@prefix ex: <http://example.org/> .
<> a ex:Person ;
 ex:address <#myAddress> .

<#myAdress> a ex:Address ;
 ex:street "SesamStreet"@en .

Listing 38: A resource consisting of two named nodes as subjects.

62.

Bibliography
[1] J. Gray and others, “The transaction concept: Virtues and limitations,” in VLDB,

1981, pp. 144–154.
[2] M. Bosquet, “Access Control Policy (ACP),” May 2022.
[3] A. Fox and E. A. Brewer, “Harvest, yield, and scalable tolerant systems,” in Pro-

ceedings of the Seventh Workshop on Hot Topics in Operating Systems, 1999, pp.
174–178.

[4] P. Stickler, “CBD - Concise Bounded Description,” Jun. 2005.
[5] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-free replicated

data types,” in Stabilization, Safety, and Security of Distributed Systems: 13th
International Symposium, SSS 2011, Grenoble, France, October 10-12, 2011. Pro-
ceedings 13, 2011, pp. 386–400.

[6] P. Colpaert, “Linked Data Event Streams.”
[7] S. Speicher, J. Arwe, and A. Malhotra, “Linked Data Platform 1.0,” Feb. 2015.
[8] D. Wood, M. Lanthaler, and R. Cyganiak, “RDF 1.1 Concepts and Abstract Syn-

tax,” Feb. 2014.
[9] H. Knublauch and D. Kontokostas, “Shapes Constraint Language (SHACL),” Jul.

2017.
[10] T. Baker and E. Prud'hommeaux, “Shape Expressions (ShEx) 2.1 Primer,” Oct.

2019.
[11] O. Erling et al., “The LDBC social network benchmark: Interactive workload,” in

Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, 2015, pp. 619–630.

[12] R. Verborgh et al., “Triple pattern fragments: a low-cost knowledge graph interface
for the web,” Journal of Web Semantics, vol. 37, pp. 184–206, 2016.

[13] P. Colpaert, “The TREE hypermedia specification,” Apr. 2024.
[14] R. Cyganiak, J. Zhao, M. Hausenblas, and K. Alexander, “Describing Linked

Datasets with the VoID Vocabulary,” Mar. 2011.
[15] T. Berners-Lee, H. Story, and S. Capadisli, “Web Access Control,” May 2024.
[16] R. Verborgh, “Re-Decentralizing the Web, For Good This Time,” Linking the

World's Information: Essays on Tim Berners-Lee's Invention of the World Wide
Web. ACM, pp. 215–230, Sep. 2023. doi: 10.1145/3591366.359138527.

[17] E. Mansour et al., “A Demonstration of the Solid platform for Social Web Appli-
cations,” in Proceedings of the 25th International Conference Companion on World
Wide Web, 2016, pp. 223–226.

[18] M. Kleppmann et al., “Bluesky and the AT Protocol: Usable Decentralized Social
Media.” 2024.

63.

https://doi.org/10.1145/3591366.3591385

[19] M. Zignani, S. Gaito, and G. P. Rossi, “Follow the "Mastodon": Structure and Evo-
lution of a Decentralized Online Social Network,” in Twelfth International AAAI
Conference on Web and Social Media, 2018.

[20] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decentralized busi-
ness review, 2008.

[21] R. Taelman and R. Verborgh, “Link traversal query processing over decentralized
environments with structural assumptions,” in International Semantic Web Con-
ference, 2023, pp. 3–22.

[22] T. Turdean, J. Zucker, V. Balseiro, S. Capadisli, and T. Berners-Lee, “Type In-
dexes,” Jun. 2022.

[23] E. Prud'hommeaux and J. Bingham, “Shape Trees Specification,” Dec. 2021.
[24] E. F. Codd, “A relational model of data for large shared data banks,” Communi-

cations of the ACM, vol. 13, no. 6, pp. 377–387, 1970.
[25] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web: A New Form of

Web Content That is Meaningful to Computers Will Unleash a Revolution of New
Possibilities,” ScientificAmerican.com, p. , 2001.

[26] G. Carothers and A. Seaborne, “RDF 1.1 N-Triples,” Feb. 2014.
[27] G. Carothers and E. Prud'hommeaux, “RDF 1.1 Turtle,” Feb. 2014.
[28] A. Seaborne and S. Harris, “SPARQL 1.1 Query Language,” Mar. 2013.
[29] R. Taelman, J. Van Herwegen, M. Vander Sande, and R. Verborgh, “Comunica: A

Modular SPARQL Query Engine for the Web,” in Proceedings of the 17th Inter-
national Semantic Web Conference, Springer International Publishing, Oct. 2018,
pp. 239–255. doi: 10.1007/978-3-030-00668-6_1528.

[30] S. Capadisli, T. Berners-Lee, R. Verborgh, and K. Kjernsmo, “Solid Protocol,”
Dec. 2022.

[31] R. Elmasri, “Fundamentals of database systems seventh edition,” 2021.
[32] J. Park and R. Sandhu, “Towards usage control models: beyond traditional access

control,” in Proceedings of the seventh ACM symposium on Access control models
and technologies, 2002, pp. 57–64.

[33] J. Bingham, E. Prud'hommeaux, and elf Pavlik, “Solid Application Interoperabil-
ity,” Apr. 2024.

[34] R. Dedecker, W. Slabbinck, J. Wright, P. Hochstenbach, P. Colpaert, and R. Ver-
borgh, “What’s in a Pod? A knowledge graph interpretation for the Solid ecosys-
tem,” in 6th Workshop on Storing, Querying and Benchmarking Knowledge Graphs
(QuWeDa) at ISWC 2022, 2022, pp. 81–96.

[35] J. Van Herwegen and R. Verborgh, “Granular Access to Policy-Governed Linked
Data via Partial Server-Side Query.”

[36] R. T. Fielding, M. Nottingham, D. Orchard, J. Gregorio, and M. Hadley, “URI
Template.” [Online]. Available: https://www.rfc-editor.org/info/rfc657029

64.

https://doi.org/10.1007/978-3-030-00668-6_15
https://www.rfc-editor.org/info/rfc6570

Bibliography

[37] T. Berners-Lee, R. T. Fielding, and L. M. Masinter, “Uniform Resource Identi-
fier (URI): Generic Syntax.” [Online]. Available: https://www.rfc-editor.org/info/
rfc398630

[38] R. Taelman and R. Verborgh, “A prospective analysis of security vulnerabilities
within link traversal-based query processing,” in 6th Workshop on Storing, Query-
ing and Benchmarking Knowledge Graphs (QuWeDa) at ISWC 2022, 2022, pp.
33–48.

[39] S. Staworko and P. Wieczorek, “Containment of Shape Expression Schemas for
RDF,” in Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, in PODS '19. <conf-loc>, <city>Amsterdam</
city>, <country>Netherlands</country>, </conf-loc>: Association for Comput-
ing Machinery, 2019, pp. 303–319. doi: 10.1145/3294052.3319687³¹.

[40] R. E. Tarjan, “Amortized computational complexity,” SIAM Journal on Algebraic
Discrete Methods, vol. 6, no. 2, pp. 306–318, 1985.

[41] J. Van Herwegen and R. Verborgh, “The Community Solid Server: Supporting
Research & Development in an Evolving Ecosystem.”

[42] R. A. Becker and J. M. Chambers, “Auditing of Data Analyses,” SIAM Journal
on Scientific and Statistical Computing, vol. 9, no. 4, pp. 747–760, 1988, doi:
10.1137/0909049³².

[43] S. Sahoo, T. Lebo, and D. McGuinness, “PROV-O: The PROV Ontology,” Apr.
2013.

[44] B. Bogaerts, B. Ketsman, Y. Zeboudj, H. Aamer, R. Taelman, and R. Ver-
borgh, “Link Traversal with Distributed Subweb Specifications,” in Proceedings of
the 5th International Joint Conference on Rules and Reasoning, S. Moschoyian-
nis, R. Peñaloza, J. Vanthienen, A. Soylu, and D. Roman, Eds., in Lecture
Notes in Computer Science, vol. 12851. Springer, Sep. 2021, pp. 62–79. doi:
10.1007/978-3-030-91167-6_5³³.

[45] O. Hartig and M. T. Özsu, “Walking without a map: Ranking-based traversal for
querying linked data,” in The Semantic Web–ISWC 2016: 15th International Se-
mantic Web Conference, Kobe, Japan, October 17–21, 2016, Proceedings, Part I
15, 2016, pp. 305–324.

[46] E. Brewer, “CAP twelve years later: How the "rules" have changed,” Computer,
vol. 45, no. 2, pp. 23–29, Feb. 2012, doi: 10.1109/MC.2012.3734.

27https://doi.org/10.1145/3591366.3591385
28https://doi.org/10.1007/978-3-030-00668-6_15
29https://www.rfc-editor.org/info/rfc6570
30https://www.rfc-editor.org/info/rfc3986
³¹https://doi.org/10.1145/3294052.3319687
³²https://doi.org/10.1137/0909049
³³https://doi.org/10.1007/978-3-030-91167-6_5
34https://doi.org/10.1109/MC.2012.37

65.

https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://doi.org/10.1145/3294052.3319687
https://doi.org/10.1137/0909049
https://doi.org/10.1007/978-3-030-91167-6_5
https://doi.org/10.1109/MC.2012.37

	Foreword
	Abstracting Data Updates over a Document-oriented interface of a Permissioned Decentralized Environment
	Introduction
	Related Work
	Theoretical positioning of Solid
	Concise Bounded Description
	Resource Descriptions
	Storage Organization Descriptions

	Storage Guidance Vocabulary
	Flow: Create Resource
	Flow: Update Resource

	Evaluation
	Theoretical Evaluation
	Creating a Resource
	Updating a resource, not moving it
	Updating a resource, moving it

	Empirical evaluation

	Future Work
	Inter-Pod updates
	Other Interfaces
	View Creation And Discovery
	Smart Access Control

	Conclusion
	Acknowledgements
	Acknowledgements
	References
	References
	List of Acronyms
	Preface
	Introduction
	Problem Statement
	Research Question
	Hypotheses
	Outline

	Semantic Web
	RDF
	Serializations
	N-Triples
	Turtle

	Concise Bounded Description

	SPARQL
	Variable
	Functions
	Bind
	STR

	Property Paths
	Different kind of queries
	Insert Data
	Delete Data
	Delete / Insert Where
	Delete Where

	Shape Descriptions
	ShEx
	SHACL

	Interfaces
	SPARQL endpoint
	LDP

	Query Engines

	Solid
	Positioning
	Access Control
	WAC
	ACP

	Usage Control
	Pod Descriptions
	Type Index
	Shape Tree

	Solid Interoperability

	Use Case
	Storage Guidance Vocabulary
	Flow: A client wants to create an RDF-resource
	Flow: A client wants to update an RDF-resource
	Details
	Resource Collection
	Unstructured Collection
	Structured Collection
	Canonical Collection
	Derived Collection
	Grouped Collection
	Resource Description
	Group Strategy
	URI Templates
	SPARQL Query

	Store Condition
	State Required
	Always Stored
	Prefer Other
	Prefer Most Specific
	Only Stored When Not Redundant
	Never

	Update condition
	Always Keep
	Keep Distance
	Prefer Static
	Best Match
	Disallow
	Removal Only
	State Dependent

	Client Control
	Free Client
	Additional Allowed
	Allowed When Not Preferred
	Allowed When Not Claimed
	No Control

	One File One Resource
	Retention Policy

	Use Case: No Collection Claims Resource
	Notification
	Assume
	Deny

	Evaluation
	Implementation
	Theoretical Evaluation
	Insert Operation
	Fetch the Description
	Loop the Resource Descriptions
	Filter Collections on Store Condition
	Compute Named Node
	Create Resources
	Conclusion Resource Creation

	Update Resource, No Move Required
	Fetch the Description and the Resource
	Construct the result
	Check the Update Condition
	Commit Changes
	Conclusion Resource Update, No Move

	Update Resource, Move Required
	Conclusion theoretical evaluation

	Empirical Evaluation
	Test Hardware Specification
	Choke Point Queries
	Choke Point: Create New Resource
	Choke Point: Update Resource, No Move
	Choke Point: Update resource: Move
	Choke Point: Illegal Update Resource
	Choke Point: Delete Resource
	Conclusion

	Future Work
	Source Discovery
	Inter pod updates
	Other Interfaces
	Guided queries
	View Creation and Discovery
	Smart Access Control
	SGV Integration with Existing Structure Ontologies
	General Update Behaviour
	CRDTs: The Eventual Consistency Approach
	ACID Transactions

	Conclusion
	Bibliography

